REFRENCES
1. Arteaga-Henríquez G, Simon MS, Burger B, et al. Low-grade inflammation as a predictor of antidepressant and anti-inflammatory therapy response in MDD patients: a systematic review of the literature in combination with an analysis of experimental data collected in the EU-Moodinflame Consortium. Frontiers in psychiatry. 2019;10.
2. Liu C-H, Zhang G-Z, Li B, et al. Role of inflammation in depression relapse. Journal of neuroinflammation. 2019;16(1):1-11.
3. Maffioletti E, Minelli A, Tardito D, Gennarelli M. Blues in the brain and beyond: Molecular bases of major depressive disorder and relative pharmacological and non-pharmacological treatments. Genes.2020;11(9):1089.
4. Medina-Rodriguez EM, Lowell JA, Worthen RJ, Syed SA, Beurel E. Involvement of innate and adaptive immune systems alterations in the pathophysiology and treatment of depression. Frontiers in neuroscience. 2018;12:547.
5. Jha MK, Minhajuddin A, Gadad BS, Greer TL, Mayes TL, Trivedi MH. Interleukin 17 selectively predicts better outcomes with bupropion-SSRI combination: Novel T cell biomarker for antidepressant medication selection. Brain, behavior, and immunity. 2017;66:103-110.
6. DellaGioia N, Devine L, Pittman B, Hannestad J. Bupropion pre-treatment of endotoxin-induced depressive symptoms. Brain, behavior, and immunity. 2013;31:197-204.
7. Tsai J-H, Kuo C-H, Yang P, et al. Effects of antidepressants on IP-10 production in LPS-activated THP-1 human monocytes. International journal of molecular sciences. 2014;15(8):13223-13235.
8. Hung Y-Y, Lin C-C, Kang H-Y, Huang T-L. TNFAIP3, a negative regulator of the TLR signaling pathway, is a potential predictive biomarker of response to antidepressant treatment in major depressive disorder.Brain, behavior, and immunity. 2017;59:265-272.
9. Shariq AS, Brietzke E, Rosenblat JD, et al. Therapeutic potential of JAK/STAT pathway modulation in mood disorders. Reviews in the Neurosciences. 2018;30(1):1-7.
10. Haroon E, Daguanno AW, Woolwine BJ, et al. Antidepressant treatment resistance is associated with increased inflammatory markers in patients with major depressive disorder. Psychoneuroendocrinology.2018;95:43-49.
11. Li X-J, Ma Q-Y, Jiang Y-M, et al. Xiaoyaosan exerts anxiolytic-like effects by down-regulating the TNF-α/JAK2-STAT3 pathway in the rat hippocampus. Scientific reports. 2017;7(1):1-13.
12. Martino M, Rocchi G, Escelsior A, Fornaro M. Immunomodulation mechanism of antidepressants: interactions between serotonin/norepinephrine balance and Th1/Th2 balance. Current neuropharmacology. 2012;10(2):97-123.
13. Stuebler AG, Jansen M. Bupropion inhibits serotonin type 3AB heteromeric channels at clinically relevant concentrations.Molecular Pharmacology. 2020;97(3):171-179.
14. Helaly A, Mokhtar N, Firgany AE-DL, Hazem NM, El Morsi E, Ghorab D. Molybdenum bupropion combined neurotoxicity in rats. Regulatory Toxicology and Pharmacology. 2018;98:224-230.
15. Akpinar A, Ceyhan MA, Yaman AR. Psoriasis triggered by bupropion in a patient with major depression. Psychiatry and Behavioral Sciences. 2013;3(4):186.
16. García M, Ruiz B, Aguirre C, Etxegarai E, Lertxundi U. Eosinophilia associated with bupropion. International journal of clinical pharmacy. 2013;35(4):532-534.
17. Jumez N, Dereure O, Bessis D, Guillot B. Flare of cutaneous lupus erythematosus induced by bupropion (Zyban®). Dermatology.2004;208(4):362-362.
18. Yuan W, Williams BN. Monoarthritis Induced by Bupropion Hydrochloride. Psychopharmacology bulletin. 2011;44(2):85.
19. Kumar S, Kodela S, Detweiler JG, Kim KY, Detweiler MB. Bupropion-induced psychosis: folklore or a fact? A systematic review of the literature. General hospital psychiatry. 2011;33(6):612-617.
20. Deng S-l, Chen J-g, Wang F. Microglia: a central player in depression. Current medical science. 2020;40(3):391-400.
21. Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L. A novel in vitro human microglia model: characterization of human monocyte-derived microglia. Journal of neuroscience methods. 2012;209(1):79-89.
22. Ohgidani M, Kato TA, Setoyama D, et al. Direct induction of ramified microglia-like cells from human monocytes: dynamic microglial dysfunction in Nasu-Hakola disease. Scientific reports.2014;4(1):1-7.
23. Arosio B, D’Addario C, Gussago C, et al. Peripheral blood mononuclear cells as a laboratory to study dementia in the elderly.BioMed research international. 2014;2014.
24. Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell communication and signaling.2017;15(1):1-13.
25. Patel K, Allen S, Haque MN, Angelescu I, Baumeister D, Tracy DK. Bupropion: a systematic review and meta-analysis of effectiveness as an antidepressant. Therapeutic Advances in Psychopharmacology.2016;6(2):99-144.
26. Cefle A, Yazici A. Bupropion hydrochloride induced serum sickness-like reaction. 2006.
27. Evrensel A, Ceylan ME. Letters to the Editor: Bupropion-Induced Erythema Multiforme. Annals of Dermatology. 2015;27(3):334-335.
28. Eller T, Vasar V, Shlik J, Maron E. Effects of bupropion augmentation on pro-inflammatory cytokines in escitalopram-resistant patients with major depressive disorder. Journal of Psychopharmacology. 2009;23(7):854-858.
29. Delgado‐Vélez M, Báez‐Pagán CA, Gerena Y, et al. The α7‐nicotinic receptor is upregulated in immune cells from HIV‐seropositive women: consequences to the cholinergic anti‐inflammatory response.Clinical & translational immunology. 2015;4(12):e53.
30. Brustolim D, Ribeiro-dos-Santos R, Kast R, Altschuler E, Soares MBP. A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. International immunopharmacology.2006;6(6):903-907.
31. Cámara-Lemarroy C, Guzmán-De La Garza F, Cordero-Pérez P, et al. Bupropion reduces the inflammatory response and intestinal injury due to ischemia-reperfusion. Paper presented at: Transplantation proceedings2013.
32. Kim J-W, Kim Y-K, Hwang J-A, et al. Plasma levels of IL-23 and IL-17 before and after antidepressant treatment in patients with major depressive disorder. Psychiatry investigation. 2013;10(3):294.
33. Slyepchenko A, Maes M, Köhler CA, et al. T helper 17 cells may drive neuroprogression in major depressive disorder: proposal of an integrative model. Neuroscience & Biobehavioral Reviews.2016;64:83-100.
34. Hung Y-Y, Huang K-W, Kang H-Y, Huang GY-L, Huang T-L. Antidepressants normalize elevated Toll-like receptor profile in major depressive disorder. Psychopharmacology. 2016;233(9):1707-1714.
35. Rashidian A, Dejban P, Fard KK, et al. Bupropion Ameliorates Acetic Acid–Induced Colitis in Rat: the Involvement of the TLR4/NF-kB Signaling Pathway. Inflammation. 2020;43(5):1999-2009.
36. Liu J, Buisman-Pijlman F, Hutchinson MR. Toll-like receptor 4: innate immune regulator of neuroimmune and neuroendocrine interactions in stress and major depressive disorder. Frontiers in neuroscience. 2014;8:309.
37. Nie X, Kitaoka S, Tanaka K, et al. The innate immune receptors TLR2/4 mediate repeated social defeat stress-induced social avoidance through prefrontal microglial activation. Neuron.2018;99(3):464-479. e467.
38. Hines DJ, Choi HB, Hines RM, Phillips AG, MacVicar BA. Prevention of LPS-induced microglia activation, cytokine production and sickness behavior with TLR4 receptor interfering peptides. PloS one.2013;8(3):e60388.
39. Yin L, Dai Q, Jiang P, et al. Manganese exposure facilitates microglial JAK2-STAT3 signaling and consequent secretion of TNF-a and IL-1β to promote neuronal death. Neurotoxicology.2018;64:195-203.
40. Cattaneo A, Ferrari C, Turner L, et al. Whole-blood expression of inflammasome-and glucocorticoid-related mRNAs correctly separates treatment-resistant depressed patients from drug-free and responsive patients in the BIODEP study. Translational psychiatry.2020;10(1):1-14.
41. Gonzalez-Pena D, Nixon SE, O’Connor JC, et al. Microglia transcriptome changes in a model of depressive behavior after immune challenge. PloS one. 2016;11(3):e0150858.
42. Nabavi SM, Ahmed T, Nawaz M, et al. Targeting STATs in neuroinflammation: The road less traveled! Pharmacological research. 2019;141:73-84.
43. Liu S, Li Q, Zhang M-T, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Scientific reports.2016;6(1):1-14.
44. Wang Z-F, Li Q, Liu S-B, et al. Aspirin-triggered Lipoxin A4 attenuates mechanical allodynia in association with inhibiting spinal JAK2/STAT3 signaling in neuropathic pain in rats. Neuroscience.2014;273:65-78.
45. Kwon S-H, Han J-K, Choi M, et al. Dysfunction of Microglial STAT3 Alleviates Depressive Behavior via Neuron–Microglia Interactions.Neuropsychopharmacology. 2017;42(10):2072-2086.
46. Lou D, Wang J, Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Molecular and Cellular Probes. 2019;48:101470.
47. Maciel IS, Silva RB, Morrone FB, Calixto JB, Campos MM. Synergistic effects of celecoxib and bupropion in a model of chronic inflammation-related depression in mice. PLoS One.2013;8(9):e77227.
48. Sachinvala ND, Teramoto N, Stergiou A. Proposed neuroimmune roles of dimethyl fumarate, bupropion, S-adenosylmethionine, and vitamin D3 in affording a chronically Ill patient sustained relief from inflammation and major depression. Brain Sciences. 2020;10(9):600.