References
1. Alizadehsani R, Behjati M, Roshanzamir Z, Hussain S, Abedini N, Hasanzadeh F, et al. Risk Factors Prediction, Clinical Outcomes, and Mortality of COVID-19 Patients. medRxiv. 2020.
2. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17(5):259-60.
3. Sugiyama M, Kinoshita N, Ide S, Nomoto H, Nakamoto T, Saito S, et al. Serum CCL17 level becomes a predictive marker to distinguish between mild/moderate and severe/critical disease in patients with COVID-19. Gene. 2020;766:145145.
4. Khan W, Hussain A, Khan SA, Al-Jumailey M, Nawaz RJapa. Association Learning Between the COVID-19 Infections and Global Demographic Characteristics Using the Class Rule Mining and Pattern Matching. 2020.
5. Alizadehsani R, Behjati M, Roshanzamir Z, Hussain S, Abedini N, Hasanzadeh F, et al. Risk Factors Prediction, Clinical Outcomes, and Mortality of COVID-19 Patients. 2020.
6. Salepci E, Turk B, Ozcan SN, Bektas ME, Aybal A, Dokmetas I, et al. Symptomatology of COVID-19 from the otorhinolaryngology perspective: a survey of 223 SARS-CoV-2 RNA-positive patients. 2020:1-11.
7. Salepci E, Turk B, Ozcan SN, Bektas ME, Aybal A, Dokmetas I, et al. Otorhinolaryngologic and General Symptoms Survey of 223 COVID-19 Patients. V1 ed. Mendeley Data2020.
8. Feng W, Huang W, Ren JJAS. Class imbalance ensemble learning based on the margin theory. 2018;8(5):815.
9. Hofmann M, Klinkenberg R. RapidMiner: Data mining use cases and business analytics applications: CRC Press; 2016.
10. Kotu V, Deshpande B. Predictive analytics and data mining: concepts and practice with rapidminer: Morgan Kaufmann; 2014.
11. Modeler IS. Algorithms Guide.[(accessed on 25 November 2020)].
12. Andrei NJCO, Applications. Scaled conjugate gradient algorithms for unconstrained optimization. 2007;38(3):401-16.
13. Feng L, Li Z, Wang Y, Zheng C, Guan Y, editors. VLSI design of modified sequential minimal optimization algorithm for fast SVM training. 2016 13th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT); 2016: IEEE.
14. Tang J, Ning J, Liu X, Wu B, Hu RJCC-ADD. A novel amino acid sequence-based computational approach to predicting cell-penetrating peptides. 2019;15(3):206-11.
15. McCormick K, Salcedo J. IBM SPSS Modeler essentials: Effective techniques for building powerful data mining and predictive analytics solutions: Packt Publishing Ltd; 2017.
16. Wendler T, Gröttrup S. Data mining with SPSS modeler: theory, exercises and solutions: Springer; 2016.
17. Mierswa I, Klinkenberg R. RapidMiner Studio (9.8)[Data science, machine learning, predictive analytics]. 2020.
18. S. Y, Arslan AK, Yologlu S, Colak C. DTROC: Tanı Testleri ve ROC Analizi Yazılımı 2019 [Available from:http://biostatapps.inonu.edu.tr/DTROC/.
19. Chicco D, Jurman GJBg. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. 2020;21(1):6.
20. Released IC. IBM SPSS Statistics for Windows, Version 26.0. IBM Corp Armonk, NY; 2019.
21. IBM_Corp R. IBM SPSS Modeler for Windows, Version 18.0. IBM Corp, Armonk, NY. 2016.
22. Pustokhin DA, Pustokhina IV, Dinh PN, Phan SV, Nguyen GN, Joshi GP. An effective deep residual network based class attention layer with bidirectional LSTM for diagnosis and classification of COVID-19. Journal of Applied Statistics. 2020:1-18.
23. Yip SS, Klanecek Z, Naganawa S, Kim J, Studen A, Rivetti L, et al. Performance and Robustness of Machine Learning-based Radiomic COVID-19 Severity Prediction. 2020.
24. Feng S, Keung J, Yu X, Xiao Y, Bennin KE, Kabir MA, et al. COSTE: Complexity-based OverSampling TEchnique to alleviate the class imbalance problem in software defect prediction. 2020;129:106432.
25. Dong X, Yu Z, Cao W, Shi Y, Ma QJFoCS. A survey on ensemble learning. 2020:1-18.
26. Zhou K, Sun Y, Li L, Zang Z, Wang J, Li J, et al. Eleven Routine Clinical Features Predict COVID-19 Severity Uncovered by Machine Learning of Longitudinal Measurements. 2020.
27. Overmyer KA, Shishkova E, Miller IJ, Balnis J, Bernstein MN, Peters-Clarke TM, et al. Large-scale multi-omic analysis of COVID-19 severity. Cell systems. 2020.
28. de Terwangne C, Laouni J, Jouffe L, Lechien JR, Bouillon V, Place S, et al. Predictive Accuracy of COVID-19 World Health Organization (WHO) Severity Classification and Comparison with a Bayesian-Method-Based Severity Score (EPI-SCORE). Pathogens. 2020;9(11):880.
29. Ali AM, Ghafoor KZ, Maghdid HS, Mulahuwaish A. Diagnosing COVID-19 Lung Inflammation Using Machine Learning Algorithms: A Comparative Study. Internet of Medical Things for Smart Healthcare: Springer; 2020. p. 91-105.
Table 1: The detailed explanation of the variables/attributes in the dataset