Acknowledgements
We thank all the researchers who contributed to the lipid adjuvants
cited and uncited in this review.
Author contributions .
Liu ZL, Xu N, Zhao L, Yu J and Zhang P were responsible for writing of
the manuscript. All authors contributed to substantial discussion of
content, reviewing, and revising the manuscript before submission.
Reference
1. Gonzalez-Fierro A, Duenas-Gonzalez A. Drug repurposing for cancer
therapy, easier said than done. Semin Cancer Biol. 2021;68 :123-31.
2. Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, et al.
Personalized Cancer Vaccines: Clinical Landscape, Challenges, and
Opportunities. Mol Ther. 2021; 29 :555-70.
3. Facciola A, Visalli G, Lagana P, La Fauci V, Squeri R, Pellicano GF,
et al. The new era of vaccines: the ”nanovaccinology”. Eur Rev Med
Pharmacol Sci. 2019; 23 :7163-82.
4. Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of
adjuvanticity: A review on adjuvants in licensed vaccines. Semin
Immunol. 2018; 39 :14-21.
5. Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer
immunotherapeutics. Int Immunol. 2016; 28 :329-38.
6. Alving CR, Beck Z, Matyas GR, Rao M. Liposomal adjuvants for human
vaccines. Expert Opin Drug Deliv. 2016; 13 :807-16.
7. Le QV, Yang G, Wu Y, Jang HW, Shokouhimehr M, Oh YK. Nanomaterials
for modulating innate immune cells in cancer immunotherapy. Asian J
Pharm Sci. 2019; 14 :16-29.
8. Kadayakkara DK, Korrer MJ, Bulte JW, Levitsky HI. Paradoxical
decrease in the capture and lymph node delivery of cancer vaccine
antigen induced by a TLR4 agonist as visualized by dual-mode imaging.
Cancer Res. 2015; 75 :51-61.
9. Yuba E. Liposome-based immunity-inducing systems for cancer
immunotherapy. Mol Immunol. 2018; 98 :8-12.
10. Bompard J, Rosso A, Brizuela L, Mebarek S, Blum LJ, Trunfio-Sfarghiu
AM, et al. Membrane Fluidity as a New Means to Selectively Target Cancer
Cells with Fusogenic Lipid Carriers. Langmuir. 2020;36 :5134-44.
11. Takechi-Haraya Y, Sakai-Kato K, Abe Y, Kawanishi T, Okuda H, Goda Y.
Atomic Force Microscopic Analysis of the Effect of Lipid Composition on
Liposome Membrane Rigidity. Langmuir. 2016; 32 :6074-82.
12. Raffy S, Teissie J. Control of lipid membrane stability by
cholesterol content. Biophys J. 1999; 76 :2072-80.
13. Zhang JA, Pawelchak J. Effect of pH, ionic strength and oxygen
burden on the chemical stability of EPC/cholesterol liposomes under
accelerated conditions. Part 1: Lipid hydrolysis. Eur J Pharm Biopharm.
2000; 50 :357-64.
14. Schottler S, Becker G, Winzen S, Steinbach T, Mohr K, Landfester K,
et al. Protein adsorption is required for stealth effect of
poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat
Nanotechnol. 2016; 11 :372-7.
15. Kaur R, Bramwell VW, Kirby DJ, Perrie Y. Pegylation of DDA:TDB
liposomal adjuvants reduces the vaccine depot effect and alters the
Th1/Th2 immune responses. J Control Release. 2012; 158 :72-7.
16. Schmidt ST, Olsen CL, Franzyk H, Worzner K, Korsholm KS, Rades T, et
al. Comparison of two different PEGylation strategies for the liposomal
adjuvant CAF09: Towards induction of CTL responses upon subcutaneous
vaccine administration. Eur J Pharm Biopharm. 2019; 140 :29-39.
17. Mercer LK, Lunt M, Low AL, Dixon WG, Watson KD, Symmons DP, et al.
Risk of solid cancer in patients exposed to anti-tumour necrosis factor
therapy: results from the British Society for Rheumatology Biologics
Register for Rheumatoid Arthritis. Ann Rheum Dis. 2015;74 :1087-93.
18. Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF.
Nanoparticles target distinct dendritic cell populations according to
their size. Eur J Immunol. 2008; 38 :1404-13.
19. Mann JF, Shakir E, Carter KC, Mullen AB, Alexander J, Ferro VA.
Lipid vesicle size of an oral influenza vaccine delivery vehicle
influences the Th1/Th2 bias in the immune response and protection
against infection. Vaccine. 2009; 27 :3643-9.
20. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP. Recent advancements
in liposome technology. Adv Drug Deliv Rev. 2020; 156 :4-22.
21. Vicario-de-la-Torre M, Benitez-del-Castillo JM, Vico E, Guzman M,
de-Las-Heras B, Herrero-Vanrell R, et al. Design and characterization of
an ocular topical liposomal preparation to replenish the lipids of the
tear film. Invest Ophthalmol Vis Sci. 2014; 55 :7839-47.
22. Aburai K, Yagi N, Yokoyama Y, Okuno H, Sakai K, Sakai H, et al.
Preparation of liposomes modified with lipopeptides using a
supercritical carbon dioxide reverse-phase evaporation method. J Oleo
Sci. 2011; 60 :209-15.
23. Szoka F, Jr., Papahadjopoulos D. Procedure for preparation of
liposomes with large internal aqueous space and high capture by
reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978;75 :4194-8.
24. Stano P, Bufali S, Pisano C, Bucci F, Barbarino M, Santaniello M, et
al. Novel camptothecin analogue (gimatecan)-containing liposomes
prepared by the ethanol injection method. J Liposome Res. 2004;14 :87-109.
25. Deamer DW. Preparation and properties of ether-injection liposomes.
Ann N Y Acad Sci. 1978; 308 :250-8.
26. Talsma H, van Steenbergen MJ, Borchert JC, Crommelin DJ. A novel
technique for the one-step preparation of liposomes and nonionic
surfactant vesicles without the use of organic solvents. Liposome
formation in a continuous gas stream: the ’bubble’ method. J Pharm Sci.
1994; 83 :276-80.
27. Meure LA, Foster NR, Dehghani F. Conventional and dense gas
techniques for the production of liposomes: a review. AAPS PharmSciTech.
2008; 9 :798-809.
28. Huang Z, Li X, Zhang T, Song Y, She Z, Li J, et al. Progress
involving new techniques for liposome preparation. Asian Journal of
Pharmaceutical Sciences. 2014; 9 :176-82.
29. van Swaay D, deMello A. Microfluidic methods for forming liposomes.
Lab Chip. 2013; 13 :752-67.
30. Allison AG, Gregoriadis G. Liposomes as immunological adjuvants.
Nature. 1974; 252 :252.
31. Wang N, Chen M, Wang T. Liposomes used as a vaccine
adjuvant-delivery system: From basics to clinical immunization. J
Control Release. 2019; 303 :130-50.
32. Zamani P, Momtazi-Borojeni AA, Nik ME, Oskuee RK, Sahebkar A.
Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy.
J Cell Physiol. 2018; 233 :5189-99.
33. Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines:
Design considerations and recent advances. Asian J Pharm Sci. 2020;15 :576-90.
34. Varypataki EM, Silva AL, Barnier-Quer C, Collin N, Ossendorp F,
Jiskoot W. Synthetic long peptide-based vaccine formulations for
induction of cell mediated immunity: A comparative study of cationic
liposomes and PLGA nanoparticles. J Control Release. 2016;226 :98-106.
35. Liu L, Ma P, Wang H, Zhang C, Sun H, Wang C, et al. Immune responses
to vaccines delivered by encapsulation into and/or adsorption onto
cationic lipid-PLGA hybrid nanoparticles. J Control Release. 2016;225 :230-9.
36. Kolasinac R, Kleusch C, Braun T, Merkel R, Csiszar A. Deciphering
the Functional Composition of Fusogenic Liposomes. Int J Mol Sci. 2018;19 :346.
37. Gregoriadis G. The immunological adjuvant and vaccine carrier
properties of liposomes. J Drug Target. 1994; 2 :351-6.
38. Ma Y, Zhuang Y, Xie X, Wang C, Wang F, Zhou D, et al. The role of
surface charge density in cationic liposome-promoted dendritic cell
maturation and vaccine-induced immune responses. Nanoscale. 2011;3 :2307-14.
39. Christensen D, Korsholm KS, Andersen P, Agger EM. Cationic liposomes
as vaccine adjuvants. Expert Rev Vaccines. 2011; 10 :513-21.
40. Riehl M, Harms M, Hanefeld A, Baleeiro RB, Walden P, Mader K.
Combining R-DOTAP and a particulate antigen delivery platform to trigger
dendritic cell activation: Formulation development and in-vitro
interaction studies. Int J Pharm. 2017; 532 :37-46.
41. Varypataki EM, Benne N, Bouwstra J, Jiskoot W, Ossendorp F.
Efficient Eradication of Established Tumors in Mice with Cationic
Liposome-Based Synthetic Long-Peptide Vaccines. Cancer Immunol Res.
2017; 5 :222-33.
42. Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM,
Montgomery SA, et al. A nanoparticle-incorporated STING activator
enhances antitumor immunity in PD-L1-insensitive models of
triple-negative breast cancer. JCI Insight. 2018; 3 : e120638.
43. Liu C, Chu X, Yan M, Qi J, Liu H, Gao F, et al. Encapsulation of
Poly I:C and the natural phosphodiester CpG ODN enhanced the efficacy of
a hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticle
vaccine in TC-1-grafted tumors. Int J Pharm. 2018; 553 :327-37.
44. Yanasarn N, Sloat BR, Cui Z. Negatively charged liposomes show
potent adjuvant activity when simply admixed with protein antigens. Mol
Pharm. 2011; 8 :1174-85.
45. Orr MT, Fox CB, Baldwin SL, Sivananthan SJ, Lucas E, Lin S, et al.
Adjuvant formulation structure and composition are critical for the
development of an effective vaccine against tuberculosis. J Control
Release. 2013; 172 :190-200.
46. Shakweh M, Besnard M, Nicolas V, Fattal E. Poly
(lactide-co-glycolide) particles of different physicochemical properties
and their uptake by peyer’s patches in mice. Eur J Pharm Biopharm. 2005;61 :1-13.
47. Zhao W, Zhuang S, Qi XR. Comparative study of the in vitro and in
vivo characteristics of cationic and neutral liposomes. Int J
Nanomedicine. 2011; 6 :3087-98.
48. Badiee A, Jaafari MR, Khamesipour A, Samiei A, Soroush D, Kheiri MT,
et al. The role of liposome charge on immune response generated in
BALB/c mice immunized with recombinant major surface glycoprotein of
Leishmania (rgp63). Exp Parasitol. 2009; 121 :362-9.
49. Halder J, Kamat AA, Landen CN, Jr., Han LY, Lutgendorf SK, Lin YG,
et al. Focal adhesion kinase targeting using in vivo short interfering
RNA delivery in neutral liposomes for ovarian carcinoma therapy. Clin
Cancer Res. 2006; 12 :4916-24.
50. Akhtar A, Wang SX, Ghali L, Bell C, Wen X. Effective Delivery of
Arsenic Trioxide to HPV-Positive Cervical Cancer Cells Using Optimised
Liposomes: A Size and Charge Study. Int J Mol Sci. 2018;19 :1081.
51. Kocabas BB, Almacioglu K, Bulut EA, Gucluler G, Tincer G, Bayik D,
et al. Dual-adjuvant effect of pH-sensitive liposomes loaded with STING
and TLR9 agonists regress tumor development by enhancing Th1 immune
response. J Control Release. 2020; 328 :587-95.
52. Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K.
pH-sensitive polymer-modified liposome-based immunity-inducing system:
Effects of inclusion of cationic lipid and CpG-DNA. Biomaterials. 2017;141 :272-83.
53. Yuba E, Uesugi S, Miyazaki M, Kado Y, Harada A, Kono K. Development
of pH-sensitive Dextran Derivatives with Strong Adjuvant Function and
Their Application to Antigen Delivery. Membranes (Basel). 2017;7 .
54. Bi H, Xue J, Jiang H, Gao S, Yang D, Fang Y, et al. Current
developments in drug delivery with thermosensitive liposomes. Asian J
Pharm Sci. 2019; 14 :365-79.
55. Sakurai Y, Kato A, Hida Y, Hamada J, Maishi N, Hida K, et al.
Synergistic Enhancement of Cellular Uptake With CD44-Expressing
Malignant Pleural Mesothelioma by Combining Cationic Liposome and
Hyaluronic Acid-Lipid Conjugate. J Pharm Sci. 2019;108 :3218-24.
56. Boks MA, Ambrosini M, Bruijns SC, Kalay H, van Bloois L, Storm G, et
al. MPLA incorporation into DC-targeting glycoliposomes favours
anti-tumour T cell responses. J Control Release. 2015;216 :37-46.
57. Shetab Boushehri MA, Lamprecht A. TLR4-Based Immunotherapeutics in
Cancer: A Review of the Achievements and Shortcomings. Mol Pharm. 2018;15 :4777-800.
58. Shimoyama A, Di Lorenzo F, Yamaura H, Mizote K, Palmigiano A, Pither
MD, et al. Lipopolysaccharide from Gut-Associated Lymphoid
Tissue-Resident Alcaligenes faecalis: Complete Structure Determination
and Chemical Synthesis of its Lipid As. Angew Chem Int Ed Engl. 2021.
59. Jiang ZH, Budzynski WA, Skeels LN, Krantz MJ, Koganty RR. Novel
lipid A mimetics derived from pentaerythritol: synthesis and their
potent agonistic activity. Tetrahedron. 2002; 58 :8833-42.
60. Reintjens NRM, Tondini E, de Jong AR, Meeuwenoord NJ, Chiodo F,
Peterse E, et al. Self-Adjuvanting Cancer Vaccines from
Conjugation-Ready Lipid A Analogues and Synthetic Long Peptides. J Med
Chem. 2020; 63 :11691-706.
61. Coler RN, Bertholet S, Moutaftsi M, Guderian JA, Windish HP, Baldwin
SL, et al. Development and characterization of synthetic glucopyranosyl
lipid adjuvant system as a vaccine adjuvant. PLoS One. 2011;6 :e16333.
62. Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J,
Sautes-Fridman C, et al. Trial watch: FDA-approved Toll-like receptor
agonists for cancer therapy. Oncoimmunology. 2012; 1 :894-907.
63. Gao J, Guo Z. Progress in the synthesis and biological evaluation of
lipid A and its derivatives. Med Res Rev. 2018; 38 :556-601.
64. Varikuti S, Oghumu S, Natarajan G, Kimble J, Sperling RH, Moretti E,
et al. STAT4 is required for the generation of Th1 and Th2, but not Th17
immune responses during monophosphoryl lipid A adjuvant activity. Int
Immunol. 2018; 30 :385.
65. Guo J, Chen Y, Lei X, Xu Y, Liu Z, Cai J, et al. Monophosphoryl
lipid a attenuates radiation injury through TLR4 activation. Oncotarget.
2017; 8 :86031-42.
66. Ahmed KK, Geary SM, Salem AK. Development and Evaluation of
Biodegradable Particles Coloaded With Antigen and the Toll-Like Receptor
Agonist, Pentaerythritol Lipid A, as a Cancer Vaccine. J Pharm Sci.
2016; 105 :1173-9.
67. Somaiah N, Chawla SP, Block MS, Morris JC, Do K, Kim JW, et al. A
Phase 1b Study Evaluating the Safety, Tolerability, and Immunogenicity
of CMB305, a Lentiviral-Based Prime-Boost Vaccine Regimen, in Patients
with Locally Advanced, Relapsed, or Metastatic Cancer Expressing
NY-ESO-1. Oncoimmunology. 2020; 9 :1847846.
68. Mahipal A, Ejadi S, Gnjatic S, Kim-Schulze S, Lu H, Ter Meulen JH,
et al. First-in-human phase 1 dose-escalating trial of G305 in patients
with advanced solid tumors expressing NY-ESO-1. Cancer Immunol
Immunother. 2019; 68 :1211-22.
69. Xiao X, Sankaranarayanan K, Khosla C. Biosynthesis and
structure-activity relationships of the lipid a family of glycolipids.
Curr Opin Chem Biol. 2017; 40 :127-37.
70. Jeong Y, Kim GB, Ji Y, Kwak GJ, Nam GH, Hong Y, et al. Dendritic
cell activation by an E. coli-derived monophosphoryl lipid A enhances
the efficacy of PD-1 blockade. Cancer Lett. 2020; 472 :19-28.
71. Zhou Z, Mondal M, Liao G, Guo Z. Synthesis and evaluation of
monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting
glycoconjugate cancer vaccine carriers. Org Biomol Chem. 2014;12 :3238-45.
72. Yoshii K, Hosomi K, Shimoyama A, Wang Y, Yamaura H, Nagatake T, et
al. Chemically Synthesized Alcaligenes Lipid A Shows a Potent and Safe
Nasal Vaccine Adjuvant Activity for the Induction of Streptococcus
pneumoniae-Specific IgA and Th17 Mediated Protective Immunity.
Microorganisms. 2020; 8 :1102.
73. Beck Z, Matyas GR, Jalah R, Rao M, Polonis VR, Alving CR.
Differential immune responses to HIV-1 envelope protein induced by
liposomal adjuvant formulations containing monophosphoryl lipid A with
or without QS21. Vaccine. 2015; 33 :5578-87.
74. Vantomme V, Dantinne C, Amrani N, Permanne P, Gheysen D, Bruck C, et
al. Immunologic analysis of a phase I/II study of vaccination with
MAGE-3 protein combined with the AS02B adjuvant in patients with
MAGE-3-positive tumors. J Immunother. 2004; 27 :124-35.
75. Slingluff CL, Jr., Petroni GR, Olson WC, Smolkin ME,
Chianese-Bullock KA, Mauldin IS, et al. A randomized pilot trial testing
the safety and immunologic effects of a MAGE-A3 protein plus AS15
immunostimulant administered into muscle or into dermal/subcutaneous
sites. Cancer Immunol Immunother. 2016; 65 :25-36.
76. Zhu D, Hu C, Fan F, Qin Y, Huang C, Zhang Z, et al. Co-delivery of
antigen and dual agonists by programmed mannose-targeted cationic
lipid-hybrid polymersomes for enhanced vaccination. Biomaterials. 2019;206 :25-40.
77. Shin WJ, Noh HJ, Noh YW, Kim S, Um SH, Lim YT. Hyaluronic
acid-supported combination of water insoluble immunostimulatory
compounds for anti-cancer immunotherapy. Carbohydr Polym. 2017;155 :1-10.
78. Ko EJ, Lee YT, Lee Y, Kim KH, Kang SM. Distinct Effects of
Monophosphoryl Lipid A, Oligodeoxynucleotide CpG, and Combination
Adjuvants on Modulating Innate and Adaptive Immune Responses to
Influenza Vaccination. Immune Netw. 2017; 17 :326-42.
79. Gableh F, Saeidi M, Hemati S, Hamdi K, Soleimanjahi H, Gorji A, et
al. Combination of the toll like receptor agonist and
alpha-Galactosylceramide as an efficient adjuvant for cancer vaccine. J
Biomed Sci. 2016; 23 :16.
80. Mei L, Liu Y, Rao J, Tang X, Li M, Zhang Z, et al. Enhanced Tumor
Retention Effect by Click Chemistry for Improved Cancer
Immunochemotherapy. ACS Appl Mater Interfaces. 2018;10 :17582-93.
81. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy
and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14 :561-84.
82. Babjuk M, Bohle A, Burger M, Capoun O, Cohen D, Comperat EM, et al.
EAU Guidelines on Non-Muscle-invasive Urothelial Carcinoma of the
Bladder: Update 2016. Eur Urol. 2017; 71 :447-61.
83. Yoshino T, Miyazaki J, Kojima T, Kandori S, Shiga M, Kawahara T, et
al. Cationized liposomal keto-mycolic acids isolated from Mycobacterium
bovis bacillus Calmette-Guerin induce antitumor immunity in a syngeneic
murine bladder cancer model. PLoS One. 2019; 14 :e0209196.
84. Kubota M, Iizasa E, Chuuma Y, Kiyohara H, Hara H, Yoshida H.
Adjuvant activity of Mycobacteria-derived mycolic acids. Heliyon. 2020;6 :e04064.
85. McCluskie MJ, Deschatelets L, Krishnan L. Sulfated archaeal
glycolipid archaeosomes as a safe and effective vaccine adjuvant for
induction of cell-mediated immunity. Human Vaccines Immunotherapeutics
2017; 13 :2772-9.
86. Haq K, Jia Y, Krishnan L. Archaeal lipid vaccine adjuvants for
induction of cell-mediated immunity. Expert Review of Vaccines. 2016;15 :1557-66.
87. Akache B, Stark FC, Jia Y, Deschatelets L, Dudani R, Harrison BA, et
al. Sulfated archaeol glycolipids: Comparison with other immunological
adjuvants in mice. PLoS One. 2018; 13 :e0208067.
88. Akache B, Stark FC, Iqbal U, Chen W, Jia Y, Krishnan L, et al.
Safety and biodistribution of sulfated archaeal glycolipid archaeosomes
as vaccine adjuvants. Human Vaccines Immunotherapeutics. 2018;14 :1746-59.
89. Jia Y, Chandan V, Akache B, Qian H, Jakubek ZJ, Vinogradov E, et al.
Assessment of stability of sulphated lactosyl archaeol archaeosomes for
use as a vaccine adjuvant. Journal of Liposome Research. 2020:1-9.
90. Stark FC, Weeratna RD, Deschatelets L, Gurnani K, Dudani R,
McCluskie MJ, et al. An Archaeosome-Adjuvanted Vaccine and Checkpoint
Inhibitor Therapy Combination Significantly Enhances Protection from
Murine Melanoma. Vaccines (Basel). 2017; 5: 38.
91. Stark FC, Agbayani G, Sandhu JK, Akache B, McPherson C, Deschatelets
L, et al. Simplified admix archaeal glycolipid adjuvanted vaccine and
checkpoint inhibitor therapy combination enhances protection from murine
melanoma. Biomedicines. 2019; 7 .
92. Agbayani G, Jia Y, Akache B, Chandan V, Iqbal U, Stark FC, et al.
Mechanistic insight into the induction of cellular immune responses by
encapsulated and admixed archaeosome-based vaccine formulations. Human
Vaccines Immunotherapeutics 2020; 16 :2183-95.
93. Li R, Peng F, Cai J, Yang D, Zhang P. Redox dual-stimuli responsive
drug delivery systems for improving tumor-targeting ability and reducing
adverse side effects. Asian J Pharm Sci. 2020; 15 :311-25.
94. Sen D, Deerinck TJ, Ellisman MH, Parker I, Cahalan MD. Quantum dots
for tracking dendritic cells and priming an immune response in vitro and
in vivo. PLoS One. 2008; 3 :e3290.