References

1. Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular. Clin Microbiol Rev [Internet]. 2003;16(3):463–96. Available from: http://cmr.asm.org/cgi/content/abstract/16/3/463
2. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A, et al. Executive Summary: Official American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines: Treatment of Drug-Susceptible Tuberculosis. Clin Infect Dis. 2016;63(7):853–67.
3. Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother. 2018 May;73(5):1138–51.
4. Kolloli A, Subbian S. Host-directed therapeutic strategies for tuberculosis. Front Med. 2017;4(OCT).
5. Kim YS, Silwal P, Kim SY, Yoshimori T, Jo EK. Autophagy-activating strategies to promote innate defense against mycobacteria. Exp Mol Med [Internet]. 2019;51(12). Available from: http://dx.doi.org/10.1038/s12276-019-0290-7
6. Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol [Internet]. 2020;13(2):190–204. Available from: http://dx.doi.org/10.1038/s41385-019-0226-5
7. Dutta NK, Bruiners N, Zimmerman MD, Tan S, Dartois V, Gennaro ML, et al. Adjunctive Host-Directed Therapy With Statins Improves Tuberculosis-Related Outcomes in Mice. J Infect Dis [Internet]. 2020 Mar;221(7):1079—1087. Available from: https://doi.org/10.1093/infdis/jiz517
8. Lachmandas E, Beigier-Bompadre M, Cheng S-C, Kumar V, van Laarhoven A, Wang X, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol. 2016 Nov;46(11):2574–86.
9. Subbian S, Tsenova L, Holloway J, Peixoto B, O’Brien P, Dartois V, et al. Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic Response to Pulmonary Tuberculosis in a Rabbit Model. EBioMedicine [Internet]. 2016;4:104–14. Available from: http://dx.doi.org/10.1016/j.ebiom.2016.01.015
10. Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol. 2020 Apr;250(5):636–46.
11. Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to combat mycobacterial infections. Immunol Rev. 2021 Feb;
12. Wallis RS, Hafner R. Advancing host-directed therapy for tuberculosis. Nat Rev Immunol. 2015 Apr;15(4):255–63.
13. van Hasselt JGC, Iyengar R. Systems Pharmacology: Defining the Interactions of Drug Combinations. Annu Rev Pharmacol Toxicol. 2019 Jan;59:21–40.
14. van Hasselt JGC, van der Graaf PH. Towards integrative systems pharmacology models in oncology drug development. Drug Discov Today Technol. 2015 Aug;15:1–8.
15. Aulin LBS, de Lange DW, Saleh MAA, van der Graaf PH, Völler S, van Hasselt JGC. Biomarker-Guided Individualization of Antibiotic Therapy. Clin Pharmacol Ther. 2021 Feb;
16. Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, Jones RDO, et al. Applications of Quantitative Systems Pharmacology in Model-Informed Drug Discovery: Perspective on Impact and Opportunities. CPT Pharmacometrics \& Syst Pharmacol [Internet]. 2019;8(11):777–91. Available from: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/psp4.12463
17. Bartelink IH, Zhang N, Keizer RJ, Strydom N, Converse PJ, Dooley KE, et al. New Paradigm for Translational Modeling to Predict Long-term Tuberculosis Treatment Response. Clin Transl Sci. 2017;10(5):366–79.
18. Fors J, Strydom N, Fox WS, Keizer RJ, Savic RM. Mathematical model and tool to explore shorter multi-drug therapy options for active pulmonary tuberculosis [Internet]. Vol. 16, PLoS Computational Biology. 2020. 1–36 p. Available from: http://dx.doi.org/10.1371/journal.pcbi.1008107
19. Chen C, Ortega F, Rullas J, Alameda L, Angulo-Barturen I, Ferrer S, et al. Management of rifamycins–everolimus drug–drug interactions in a liver-transplant patient with pulmonary tuberculosis. Transpl Int [Internet]. 2015 Apr;25(11):e120–3. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1432-2277.2012.01561.x
20. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell. 2004;119(6):753–66.
21. Deretic V. Autophagy in tuberculosis. Cold Spring Harb Perspect Med. 2014;4(11):1–15.
22. Bento CF, Empadinhas N, Mendes V. Autophagy in the fight against tuberculosis. DNA Cell Biol. 2015;34(4):228–42.
23. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang S, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc Natl Acad Sci U S A. 2012;109(46).
24. Singh P, Subbian S. Harnessing the mTOR Pathway for Tuberculosis Treatment. Front Microbiol. 2018;9(JAN):1–11.
25. Lachmandas E, Beigier-Bompadre M, Cheng SC, Kumar V, van Laarhoven A, Wang X, et al. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol. 2016;46(11):2574–86.
26. Singhal A, Jie L, Kumar P, Hong GS, Leow MKS, Paleja B, et al. Metformin as adjunct antituberculosis therapy. Sci Transl Med. 2014;6(263).
27. Lachmandas E, Eckold C, Böhme J, Koeken VACM, Marzuki MB, Blok B, et al. Metformin Alters Human Host Responses to Mycobacterium tuberculosis in Healthy Subjects. J Infect Dis. 2019 Jun;220(1):139–50.
28. Degner NR, Wang J-Y, Golub JE, Karakousis PC. Metformin Use Reverses the Increased Mortality Associated With Diabetes Mellitus During Tuberculosis Treatment. Clin Infect Dis an Off Publ Infect Dis Soc Am. 2018 Jan;66(2):198–205.
29. Ma Y, Pang Y, Shu W, Liu Y-H, Ge Q-P, Du J, et al. Metformin reduces the relapse rate of tuberculosis patients with diabetes mellitus: experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2018 Jul;37(7):1259–63.
30. Ashley D, Hernandez J, Cao R, To K, Yegiazaryan A, Abrahem R, et al. Antimycobacterial Effects of Everolimus in a Human Granuloma Model. J Clin Med. 2020;9(7):2043.
31. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et al. Adjunctive host-directed therapies for pulmonary tuberculosis: a prospective, open-label, phase 2, randomised controlled trial. Lancet Respir Med. 2021 Mar;
32. Hu Y, Wen Z, Liu S, Cai Y, Guo J, Xu Y, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect. 2020 Jun;80(6):e19–26.
33. Bruiners N, Dutta NK, Guerrini V, Salamon H, Yamaguchi KD, Karakousis PC, et al. The anti-tubercular activity of simvastatin is mediated by cholesterol-dependent regulation of autophagy via the AMPK-mTORC1-TFEB axis. bioRxiv [Internet]. 2020; Available from: https://www.biorxiv.org/content/early/2020/03/05/2020.03.04.977579
34. Parihar SP, Guler R, Khutlang R, Lang DM, Hurdayal R, Mhlanga MM, et al. Statin therapy reduces the mycobacterium tuberculosis burden in human macrophages and in mice by enhancing autophagy and phagosome maturation. J Infect Dis. 2014 Mar;209(5):754–63.
35. Skerry C, Pinn ML, Bruiners N, Pine R, Gennaro ML, Karakousis PC. Simvastatin increases the in vivo activity of the first-line tuberculosis regimen. J Antimicrob Chemother. 2014 Sep;69(9):2453–7.
36. Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous Effects of Statin Therapy: A Review of Literature. Cureus. 2020 Mar;12(3):e7404.
37. Chen Y-T, Kuo S-C, Chao P-W, Chang Y-Y. Use of lipid-lowering agents is not associated with improved outcomes for tuberculosis patients on standard-course therapy: A population-based cohort study. PLoS One. 2019;14(1):e0210479.
38. Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous Effects of Statin Therapy: A Review of Literature. Cureus. 2020;12(3).
39. Chandran A, Antony C, Jose L, Mundayoor S, Natarajan K, Ajay Kumar R. Mycobacterium tuberculosis infection induces HDAC1-mediated suppression of IL-12B gene expression in macrophages. Front Cell Infect Microbiol. 2015;5(DEC):1–14.
40. Moreira JD, Koch BE V, van Veen S, Walburg K V, Vrieling F, Mara Pinto Dabés Guimarães T, et al. Functional Inhibition of Host Histone Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial Activity in Human Macrophages and in Zebrafish. Front Immunol. 2020;11:36.
41. Mahadik K, Prakhar P, Rajmani RS, Singh A, Balaji KN. c-Abl-TWIST1 Epigenetically Dysregulate Inflammatory Responses during Mycobacterial Infection by Co-Regulating Bone Morphogenesis Protein and miR27a. Front Immunol [Internet]. 2018;9:85. Available from: https://www.frontiersin.org/article/10.3389/fimmu.2018.00085
42. Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X. Role of autophagy in histone deacetylase inhibitor-induced apoptotic and nonapoptotic cell death. Proc Natl Acad Sci U S A. 2012 Apr;109(17):6561–5.
43. Zhang J, Ng S, Wang J, Zhou J, Tan S-H, Yang N, et al. Histone deacetylase inhibitors induce autophagy through FOXO1-dependent pathways. Autophagy. 2015 Apr;11(4):629–42.
44. Cox DJ, Coleman AM, Gogan KM, Phelan JJ, Ó Maoldomhnaigh C, Dunne PJ, et al. Inhibiting Histone Deacetylases in Human Macrophages Promotes Glycolysis, IL-1β, and T Helper Cell Responses to Mycobacterium tuberculosis. Front Immunol. 2020;11(July):1–15.
45. Wang X, Tang X, Zhou Z, Huang Q. Histone deacetylase 6 inhibitor enhances resistance to Mycobacterium tuberculosis infection through innate and adaptive immunity in mice. Pathog Dis. 2018 Aug;76(6).
46. Giver CR, Shaw PA, Fletcher H, Kaushal D, Pamela G, Omoyege D, et al. IMPACT-TB*: A Phase II Trial Assessing the Capacity of Low Dose Imatinib to Induce Myelopoiesis and Enhance Host Anti-Microbial Immunity Against Tuberculosis. *Imatinib Mesylate per Oral As a Clinical Therapeutic for TB. Blood [Internet]. 2019 Nov 13;134(Supplement_1):1050. Available from: https://doi.org/10.1182/blood-2019-130275
47. Tsukaguchi K, de Lange B, Boom WH. Differential regulation of IFN-gamma, TNF-alpha, and IL-10 production by CD4(+) alphabetaTCR+ T cells and vdelta2(+) gammadelta T cells in response to monocytes infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol. 1999 May;194(1):12–20.
48. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, et al. Infection of Human Macrophages and Dendritic Cells with Mycobacterium tuberculosis Induces a Differential Cytokine Gene Expression That Modulates T Cell Response . J Immunol. 2001;166(12):7033–41.
49. Marino S, Myers A, Flynn JL, Kirschner DE. TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: a next-generation two-compartmental model. J Theor Biol [Internet]. 2010 Aug;265(4):586—598. Available from: https://europepmc.org/articles/PMC3150786
50. Marino S, Kirschner DE. The human immune response to Mycobacterium tuberculosis in lung and lymph node. J Theor Biol. 2004;227(4):463–86.
51. Sahiratmadja E, Alisjahbana B, de Boer T, Adnan I, Maya A, Danusantoso H, et al. Dynamic Changes in Pro- and Anti-Inflammatory Cytokine Profiles and Gamma Interferon Receptor Signaling Integrity Correlate with Tuberculosis Disease Activity and Response to Curative Treatment. Infect Immun [Internet]. 2007;75(2):820–9. Available from: https://iai.asm.org/content/75/2/820
52. Cavalcanti YVN, Brelaz MCA, Neves JKDAL, Ferraz JC, Pereira VRA. Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med. 2012;2012.
53. Gonzalez-Juarrero M, Kingry LC, Ordway DJ, Henao-Tamayo M, Harton M, Basaraba RJ, et al. Immune response to mycobacterium tuberculosis and identification of molecular markers of disease. Am J Respir Cell Mol Biol. 2009;40(4):398–409.
54. Flesch IEA, Kaufmann SHE. Activation of tuberculostatic macrophage functions by gamma interferon, interleukin-4, and tumor necrosis factor. Infect Immun. 1990;58(8):2675–7.
55. van Crevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to Mycobacterium tuberculosis. Clin Microbiol Rev. 2002 Apr;15(2):294–309.
56. Wigginton JE, Kirschner D. A Model to Predict Cell-Mediated Immune Regulatory Mechanisms During Human Infection with Mycobacterium tuberculosis . J Immunol. 2001;166(3):1951–67.
57. Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr. 2016 Oct;4(5).
58. Redford PS, Murray PJ, O’Garra A. The role of IL-10 in immune regulation during M. tuberculosis infection. Mucosal Immunol. 2011 May;4(3):261–70.
59. Reljic R, Paul MJ, Arias MA. Cytokine therapy of tuberculosis at the crossroads. Expert Rev Respir Med [Internet]. 2009;3(1):53–66. Available from: https://doi.org/10.1586/17476348.3.1.53
60. Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet (London, England). 1997 May;349(9064):1513–5.
61. Koh W-J, Kwon OJ, Suh GY, Chung MP, Kim H, Lee NY, et al. Six-month therapy with aerosolized interferon-gamma for refractory multidrug-resistant pulmonary tuberculosis. J Korean Med Sci. 2004 Apr;19(2):167–71.
62. Naftalin CM, Verma R, Gurumurthy M, Hee KH, Lu Q, Yeo BCM, et al. Adjunctive use of celecoxib with anti-tuberculosis drugs: evaluation in a whole-blood bactericidal activity model. Sci Rep. 2018;8(1):1–8.
63. von Andrian UH, Mackay CR. T-cell function and migration. Two sides of the same coin. N Engl J Med. 2000 Oct;343(14):1020–34.
64. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008;205(1):105–15.
65. Harding C V, Boom WH. Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol. 2010 Apr;8(4):296–307.
66. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G, et al. Infection of Human Macrophages and Dendritic Cells with <em>Mycobacterium tuberculosis</em> Induces a Differential Cytokine Gene Expression That Modulates T Cell Response. J Immunol [Internet]. 2001 Jun 15;166(12):7033 LP – 7041. Available from: http://www.jimmunol.org/content/166/12/7033.abstract
67. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003 Feb;3(2):133–46.
68. Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol. 2015 May;37(3):239–49.
69. Shen H, Min R, Tan Q, Xie W, Wang H, Pan H, et al. The beneficial effects of adjunctive recombinant human interleukin-2 for multidrug resistant tuberculosis. Arch Med Sci. 2015 Jun;11(3):584–90.
70. Saleh MAA, van de Garde EMW, van Hasselt JGC. Host-response biomarkers for the diagnosis of bacterial respiratory tract infections. Clin Chem Lab Med. 2019 Mar;57(4):442–51.
71. Fonseca KL, Rodrigues PNS, Olsson IAS, Saraiva M. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog. 2017 Aug;13(8):e1006421.
72. Van Der Vaart M, Korbee CJ, Lamers GEM, Tengeler AC, Hosseini R, Haks MC, et al. The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLP-MYD88 to authophagic defense. Cell Host Microbe. 2014;15(6):753–67.
73. Korbee CJ, Heemskerk MT, Kocev D, van Strijen E, Rabiee O, Franken KLMC, et al. Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials. Nat Commun. 2018 Jan;9(1):358.
74. Tezera LB, Bielecka MK, Chancellor A, Reichmann MT, Shammari B Al, Brace P, et al. Dissection of the host-pathogen interaction in human tuberculosis using a bioengineered 3-dimensional model. Elife. 2017;6:1–19.
75. Thacker V V., Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A lung-on-chip model of early m. Tuberculosis infection reveals an essential role for alveolar epithelial cells in controlling bacterial growth. Elife. 2020;9:1–73.
76. Gumbo T, Pasipanodya JG, Nuermberger E, Romero K, Hanna D. Correlations Between the Hollow Fiber Model of Tuberculosis and Therapeutic Events in Tuberculosis Patients: Learn and Confirm. Clin Infect Dis [Internet]. 2015;61(suppl_1):S18–24. Available from: https://doi.org/10.1093/cid/civ426
77. Meijer AH. Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol. 2016;38(2):261–73.
78. H. Meijer A, P. Spaink H. Host-Pathogen Interactions Made Transparent with the Zebrafish Model. Curr Drug Targets. 2011;12(7):1000–17.
79. Myllymäki H, Bäuerlein CA, Rämet M. The Zebrafish Breathes New Life into the Study of Tuberculosis. Front Immunol. 2016;7:196.
80. Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP. Comparative studies of Toll-like receptor signalling using zebrafish. Dev Comp Immunol. 2014 Sep;46(1):35–52.
81. Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell. 2019 Sep;178(6):1344-1361.e11.
82. Carvalho R, de Sonneville J, Stockhammer OW, Savage NDL, Veneman WJ, Ottenhoff THM, et al. A high-throughput screen for tuberculosis progression. PLoS One. 2011 Feb;6(2):e16779.
83. Johansen MD, Daher W, Roquet-Banères F, Raynaud C, Alcaraz M, Maurer FP, et al. Rifabutin Is Bactericidal against Intracellular and Extracellular Forms of Mycobacterium abscessus. Antimicrob Agents Chemother. 2020 Oct;64(11).
84. Ordas A, Raterink R-J, Cunningham F, Jansen HJ, Wiweger MI, Jong-Raadsen S, et al. Testing tuberculosis drug efficacy in a zebrafish high-throughput translational medicine screen. Antimicrob Agents Chemother. 2015 Feb;59(2):753–62.
85. van Wijk RC, Hu W, Dijkema SM, van den Berg DJ, Liu J, Bahi R, et al. Anti-tuberculosis effect of isoniazid scales accurately from zebrafish to humans. Br J Pharmacol. 2020;177(24):5518–33.
86. Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004 Mar;172(5):2731–8.
87. Plumlee CR, Duffy FJ, Gern BH, Delahaye JL, Cohen SB, Stoltzfus CR, et al. Ultra-low Dose Aerosol Infection of Mice with Mycobacterium tuberculosis More Closely Models Human Tuberculosis. Cell Host Microbe. 2021 Jan;29(1):68-82.e5.
88. Zwep LB, Duisters KLW, Jansen M, Guo T, Meulman JJ, Upadhyay PJ, et al. Identification of high-dimensional omics-derived predictors for tumor growth dynamics using machine learning and pharmacometric modeling. CPT pharmacometrics Syst Pharmacol. 2021 Apr;10(4):350–61.
89. van Hasselt JGC, Rahman R, Hansen J, Stern A, Shim J V, Xiong Y, et al. Transcriptomic profiling of human cardiac cells predicts protein kinase inhibitor-associated cardiotoxicity. Nat Commun. 2020 Sep;11(1):4809.
90. Shim J V, Chun B, van Hasselt JGC, Birtwistle MR, Saucerman JJ, Sobie EA. Mechanistic Systems Modeling to Improve Understanding and Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics. Front Physiol. 2017;8:651.
91. Yang H-J, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol [Internet]. 2021;11:134. Available from: https://www.frontiersin.org/article/10.3389/fcimb.2021.613149
92. Grange JM, Winstanley PA, Davies PD. Clinically significant drug interactions with antituberculosis agents. Drug Saf. 1994 Oct;11(4):242–51.
93. Mehta K, Ravimohan S, Pasipanodya JG, Srivastava S, Modongo C, Zetola NM, et al. Optimizing ethambutol dosing among HIV/tuberculosis co-infected patients: a population pharmacokinetic modelling and simulation study. J Antimicrob Chemother. 2019 Oct;74(10):2994–3002.
94. Hanke N, Türk D, Selzer D, Ishiguro N, Ebner T, Wiebe S, et al. A Comprehensive Whole-Body Physiologically Based Pharmacokinetic Drug–Drug–Gene Interaction Model of Metformin and Cimetidine in Healthy Adults and Renally Impaired Individuals. Clin Pharmacokinet [Internet]. 2020;59(11):1419–31. Available from: https://doi.org/10.1007/s40262-020-00896-w
95. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, et al. Population pharmacokinetics of metformin in healthy subjects and patients with type 2 diabetes mellitus: simulation of doses according to renal function. Clin Pharmacokinet. 2013 May;52(5):373–84.
96. Palsson S, Hickling TP, Bradshaw-Pierce EL, Zager M, Jooss K, O’Brien PJ, et al. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst Biol [Internet]. 2013;7(1):1. Available from: BMC Systems Biology
97. Sud D, Bigbee C, Flynn JL, Kirschner DE. Contribution of CD8 + T Cells to Control of Mycobacterium tuberculosis Infection . J Immunol. 2006;176(7):4296–314.
98. Martin KR, Barua D, Kauffman AL, Westrate LM, Posner RG, Hlavacek WS, et al. Computational model for autophagic vesicle dynamics in single cells. Autophagy. 2013;9(1):74–92.
99. Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson JJ. Dynamic modeling of the interaction between autophagy and apoptosis in mammalian cells. CPT Pharmacometrics Syst Pharmacol. 2015;4(4):263–72.
100. Holczer M, Hajdú B, Lőrincz T, Szarka A, Bánhegyi G, Kapuy O. A double negative feedback loop between MTORC1 and AMPK kinases guarantees precise autophagy induction upon cellular stress. Int J Mol Sci. 2019;20(22).
101. Liu B, Oltvai ZN, Baylr H, Silverman GA, Pak SC, Perlmutter DH, et al. Quantitative assessment of cell fate decision between autophagy and apoptosis. Sci Rep. 2017;7(1):1–14.
102. Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S, Encalada R, Moreno-Sánchez R, Saavedra E. Modeling cancer glycolysis. Biochim Biophys Acta. 2011 Jun;1807(6):755–67.
103. Mosca E, Alfieri R, Maj C, Bevilacqua A, Canti G, Milanesi L. Computational modeling of the metabolic states regulated by the kinase Akt. Front Physiol. 2012;3 NOV(November):1–26.
104. de Steenwinkel JEM, de Knegt GJ, ten Kate MT, van Belkum A, Verbrugh HA, Kremer K, et al. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis. J Antimicrob Chemother. 2010 Dec;65(12):2582–9.
105. McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF. Mutation rate and the emergence of drug resistance in Mycobacterium tuberculosis. J Antimicrob Chemother [Internet]. 2014 Feb 1;69(2):292–302. Available from: https://doi.org/10.1093/jac/dkt364
106. Chen EP, Bondi RW, Michalski PJ. Model-based Target Pharmacology Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug Discovery. J Med Chem. 2021;
107. Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology Strategies for the Early Clinical Development of Bispecific Antibodies in Oncology. Clin Pharmacol \& Ther [Internet]. 2020;108(3):528–41. Available from: https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/cpt.1961
108. Hardiansyah D, Ng CM. Quantitative Systems Pharmacology Model of Chimeric Antigen Receptor T-Cell Therapy. Clin Transl Sci. 2019;12(4):343–9.
109. Ernest JP, Strydom N, Wang Q, Zhang N, Nuermberger E, Dartois V, et al. Development of New Tuberculosis Drugs: Translation to Regimen Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis. Annu Rev Pharmacol Toxicol. 2021;61:495–516.
110. Ding Y, Raterink R-J, Marín-Juez R, Veneman WJ, Egbers K, van den Eeden S, et al. Tuberculosis causes highly conserved metabolic changes in human patients, mycobacteria-infected mice and zebrafish larvae. Sci Rep. 2020 Jul;10(1):11635.
111. Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S, Rangel-Moreno J, et al. Immune correlates of tuberculosis disease and risk translate across species. Sci Transl Med [Internet]. 2020;12(528). Available from: https://stm.sciencemag.org/content/12/528/eaay0233
112. van Steijn L, Verbeek FJ, Spaink HP, Merks RMH. Predicting Metabolism from Gene Expression in an Improved Whole-Genome Metabolic Network Model of Danio rerio. Zebrafish. 2019 Aug;16(4):348–62.
113. Walker NF, Meintjes G, Wilkinson RJ. HIV-1 and the immune response to TB. Future Virol. 2013 Jan;8(1):57–80.
114. McCallum AD, Pertinez HE, Else LJ, Dilly-Penchala S, Chirambo AP, Sheha I, et al. Intrapulmonary Pharmacokinetics of First-line Anti-tuberculosis Drugs in Malawian Patients With Tuberculosis. Clin Infect Dis. 2020;(Mic):1–9.
115. DiNardo AR, Nishiguchi T, Grimm SL, Schlesinger LS, Graviss EA, Cirillo JD, et al. Tuberculosis endotypes to guide stratified host-directed therapy. Med [Internet]. 2021;2(3):217–32. Available from: https://doi.org/10.1016/j.medj.2020.11.003
116. DiNardo AR, Gandhi T, Heyckendorf J, Grimm SL, Rajapakshe K, Nishiguchi T, et al. Gene expression signatures identify biologically and clinically distinct tuberculosis endotypes. medRxiv [Internet]. 2021; Available from: https://www.medrxiv.org/content/early/2021/02/07/2020.05.13.20100776
117. Lazarou G, Chelliah V, Small BG, Walker M, van der Graaf PH, Kierzek AM. Integration of Omics Data Sources to Inform Mechanistic Modeling of Immune-Oncology Therapies: A Tutorial for Clinical Pharmacologists. Clin Pharmacol Ther. 2020;107(4):858–70.
118. Klinke DJ, Wang Q. Inferring the impact of regulatory mechanisms that underpin CD8+ T cell control of B16 tumor growth in vivo using mechanistic models and simulation. Front Pharmacol. 2017;7(JAN):1–22.
119. Coletti R, Leonardelli L, Parolo S, Marchetti L. A QSP model of prostate cancer immunotherapy to identify effective combination therapies. Sci Rep [Internet]. 2020;10(1):9063. Available from: https://doi.org/10.1038/s41598-020-65590-0