References
1. Smith I. Mycobacterium tuberculosis Pathogenesis and Molecular. Clin
Microbiol Rev [Internet]. 2003;16(3):463–96. Available from:
http://cmr.asm.org/cgi/content/abstract/16/3/463
2. Nahid P, Dorman SE, Alipanah N, Barry PM, Brozek JL, Cattamanchi A,
et al. Executive Summary: Official American Thoracic Society/Centers for
Disease Control and Prevention/Infectious Diseases Society of America
Clinical Practice Guidelines: Treatment of Drug-Susceptible
Tuberculosis. Clin Infect Dis. 2016;63(7):853–67.
3. Dookie N, Rambaran S, Padayatchi N, Mahomed S, Naidoo K. Evolution of
drug resistance in Mycobacterium tuberculosis: a review on the molecular
determinants of resistance and implications for personalized care. J
Antimicrob Chemother. 2018 May;73(5):1138–51.
4. Kolloli A, Subbian S. Host-directed therapeutic strategies for
tuberculosis. Front Med. 2017;4(OCT).
5. Kim YS, Silwal P, Kim SY, Yoshimori T, Jo EK. Autophagy-activating
strategies to promote innate defense against mycobacteria. Exp Mol Med
[Internet]. 2019;51(12). Available from:
http://dx.doi.org/10.1038/s12276-019-0290-7
6. Young C, Walzl G, Du Plessis N. Therapeutic host-directed strategies
to improve outcome in tuberculosis. Mucosal Immunol [Internet].
2020;13(2):190–204. Available from:
http://dx.doi.org/10.1038/s41385-019-0226-5
7. Dutta NK, Bruiners N, Zimmerman MD, Tan S, Dartois V, Gennaro ML, et
al. Adjunctive Host-Directed Therapy With Statins Improves
Tuberculosis-Related Outcomes in Mice. J Infect Dis [Internet]. 2020
Mar;221(7):1079—1087. Available from:
https://doi.org/10.1093/infdis/jiz517
8. Lachmandas E, Beigier-Bompadre M, Cheng S-C, Kumar V, van Laarhoven
A, Wang X, et al. Rewiring cellular metabolism via the AKT/mTOR pathway
contributes to host defence against Mycobacterium tuberculosis in human
and murine cells. Eur J Immunol. 2016 Nov;46(11):2574–86.
9. Subbian S, Tsenova L, Holloway J, Peixoto B, O’Brien P, Dartois V, et
al. Adjunctive Phosphodiesterase-4 Inhibitor Therapy Improves Antibiotic
Response to Pulmonary Tuberculosis in a Rabbit Model. EBioMedicine
[Internet]. 2016;4:104–14. Available from:
http://dx.doi.org/10.1016/j.ebiom.2016.01.015
10. Tsenova L, Singhal A. Effects of host-directed therapies on the
pathology of tuberculosis. J Pathol. 2020 Apr;250(5):636–46.
11. Kilinç G, Saris A, Ottenhoff THM, Haks MC. Host-directed therapy to
combat mycobacterial infections. Immunol Rev. 2021 Feb;
12. Wallis RS, Hafner R. Advancing host-directed therapy for
tuberculosis. Nat Rev Immunol. 2015 Apr;15(4):255–63.
13. van Hasselt JGC, Iyengar R. Systems Pharmacology: Defining the
Interactions of Drug Combinations. Annu Rev Pharmacol Toxicol. 2019
Jan;59:21–40.
14. van Hasselt JGC, van der Graaf PH. Towards integrative systems
pharmacology models in oncology drug development. Drug Discov Today
Technol. 2015 Aug;15:1–8.
15. Aulin LBS, de Lange DW, Saleh MAA, van der Graaf PH, Völler S, van
Hasselt JGC. Biomarker-Guided Individualization of Antibiotic Therapy.
Clin Pharmacol Ther. 2021 Feb;
16. Bradshaw EL, Spilker ME, Zang R, Bansal L, He H, Jones RDO, et al.
Applications of Quantitative Systems Pharmacology in Model-Informed Drug
Discovery: Perspective on Impact and Opportunities. CPT Pharmacometrics
\& Syst Pharmacol [Internet]. 2019;8(11):777–91.
Available from:
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/psp4.12463
17. Bartelink IH, Zhang N, Keizer RJ, Strydom N, Converse PJ, Dooley KE,
et al. New Paradigm for Translational Modeling to Predict Long-term
Tuberculosis Treatment Response. Clin Transl Sci. 2017;10(5):366–79.
18. Fors J, Strydom N, Fox WS, Keizer RJ, Savic RM. Mathematical model
and tool to explore shorter multi-drug therapy options for active
pulmonary tuberculosis [Internet]. Vol. 16, PLoS Computational
Biology. 2020. 1–36 p. Available from:
http://dx.doi.org/10.1371/journal.pcbi.1008107
19. Chen C, Ortega F, Rullas J, Alameda L, Angulo-Barturen I, Ferrer S,
et al. Management of rifamycins–everolimus drug–drug interactions in a
liver-transplant patient with pulmonary tuberculosis. Transpl Int
[Internet]. 2015 Apr;25(11):e120–3. Available from:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1432-2277.2012.01561.x
20. Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V.
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium
tuberculosis survival in infected macrophages. Cell.
2004;119(6):753–66.
21. Deretic V. Autophagy in tuberculosis. Cold Spring Harb Perspect Med.
2014;4(11):1–15.
22. Bento CF, Empadinhas N, Mendes V. Autophagy in the fight against
tuberculosis. DNA Cell Biol. 2015;34(4):228–42.
23. Castillo EF, Dekonenko A, Arko-Mensah J, Mandell MA, Dupont N, Jiang
S, et al. Autophagy protects against active tuberculosis by suppressing
bacterial burden and inflammation. Proc Natl Acad Sci U S A.
2012;109(46).
24. Singh P, Subbian S. Harnessing the mTOR Pathway for Tuberculosis
Treatment. Front Microbiol. 2018;9(JAN):1–11.
25. Lachmandas E, Beigier-Bompadre M, Cheng SC, Kumar V, van Laarhoven
A, Wang X, et al. Rewiring cellular metabolism via the AKT/mTOR pathway
contributes to host defence against Mycobacterium tuberculosis in human
and murine cells. Eur J Immunol. 2016;46(11):2574–86.
26. Singhal A, Jie L, Kumar P, Hong GS, Leow MKS, Paleja B, et al.
Metformin as adjunct antituberculosis therapy. Sci Transl Med.
2014;6(263).
27. Lachmandas E, Eckold C, Böhme J, Koeken VACM, Marzuki MB, Blok B, et
al. Metformin Alters Human Host Responses to Mycobacterium tuberculosis
in Healthy Subjects. J Infect Dis. 2019 Jun;220(1):139–50.
28. Degner NR, Wang J-Y, Golub JE, Karakousis PC. Metformin Use Reverses
the Increased Mortality Associated With Diabetes Mellitus During
Tuberculosis Treatment. Clin Infect Dis an Off Publ Infect Dis Soc Am.
2018 Jan;66(2):198–205.
29. Ma Y, Pang Y, Shu W, Liu Y-H, Ge Q-P, Du J, et al. Metformin reduces
the relapse rate of tuberculosis patients with diabetes mellitus:
experiences from 3-year follow-up. Eur J Clin Microbiol Infect Dis Off
Publ Eur Soc Clin Microbiol. 2018 Jul;37(7):1259–63.
30. Ashley D, Hernandez J, Cao R, To K, Yegiazaryan A, Abrahem R, et al.
Antimycobacterial Effects of Everolimus in a Human Granuloma Model. J
Clin Med. 2020;9(7):2043.
31. Wallis RS, Ginindza S, Beattie T, Arjun N, Likoti M, Edward VA, et
al. Adjunctive host-directed therapies for pulmonary tuberculosis: a
prospective, open-label, phase 2, randomised controlled trial. Lancet
Respir Med. 2021 Mar;
32. Hu Y, Wen Z, Liu S, Cai Y, Guo J, Xu Y, et al. Ibrutinib suppresses
intracellular mycobacterium tuberculosis growth by inducing macrophage
autophagy. J Infect. 2020 Jun;80(6):e19–26.
33. Bruiners N, Dutta NK, Guerrini V, Salamon H, Yamaguchi KD,
Karakousis PC, et al. The anti-tubercular activity of simvastatin is
mediated by cholesterol-dependent regulation of autophagy via the
AMPK-mTORC1-TFEB axis. bioRxiv [Internet]. 2020; Available from:
https://www.biorxiv.org/content/early/2020/03/05/2020.03.04.977579
34. Parihar SP, Guler R, Khutlang R, Lang DM, Hurdayal R, Mhlanga MM, et
al. Statin therapy reduces the mycobacterium tuberculosis burden in
human macrophages and in mice by enhancing autophagy and phagosome
maturation. J Infect Dis. 2014 Mar;209(5):754–63.
35. Skerry C, Pinn ML, Bruiners N, Pine R, Gennaro ML, Karakousis PC.
Simvastatin increases the in vivo activity of the first-line
tuberculosis regimen. J Antimicrob Chemother. 2014 Sep;69(9):2453–7.
36. Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous
Effects of Statin Therapy: A Review of Literature. Cureus. 2020
Mar;12(3):e7404.
37. Chen Y-T, Kuo S-C, Chao P-W, Chang Y-Y. Use of lipid-lowering agents
is not associated with improved outcomes for tuberculosis patients on
standard-course therapy: A population-based cohort study. PLoS One.
2019;14(1):e0210479.
38. Tahir F, Bin Arif T, Ahmed J, Shah SR, Khalid M. Anti-tuberculous
Effects of Statin Therapy: A Review of Literature. Cureus. 2020;12(3).
39. Chandran A, Antony C, Jose L, Mundayoor S, Natarajan K, Ajay Kumar
R. Mycobacterium tuberculosis infection induces HDAC1-mediated
suppression of IL-12B gene expression in macrophages. Front Cell Infect
Microbiol. 2015;5(DEC):1–14.
40. Moreira JD, Koch BE V, van Veen S, Walburg K V, Vrieling F, Mara
Pinto Dabés Guimarães T, et al. Functional Inhibition of Host Histone
Deacetylases (HDACs) Enhances in vitro and in vivo Anti-mycobacterial
Activity in Human Macrophages and in Zebrafish. Front Immunol.
2020;11:36.
41. Mahadik K, Prakhar P, Rajmani RS, Singh A, Balaji KN. c-Abl-TWIST1
Epigenetically Dysregulate Inflammatory Responses during Mycobacterial
Infection by Co-Regulating Bone Morphogenesis Protein and miR27a. Front
Immunol [Internet]. 2018;9:85. Available from:
https://www.frontiersin.org/article/10.3389/fimmu.2018.00085
42. Gammoh N, Lam D, Puente C, Ganley I, Marks PA, Jiang X. Role of
autophagy in histone deacetylase inhibitor-induced apoptotic and
nonapoptotic cell death. Proc Natl Acad Sci U S A. 2012
Apr;109(17):6561–5.
43. Zhang J, Ng S, Wang J, Zhou J, Tan S-H, Yang N, et al. Histone
deacetylase inhibitors induce autophagy through FOXO1-dependent
pathways. Autophagy. 2015 Apr;11(4):629–42.
44. Cox DJ, Coleman AM, Gogan KM, Phelan JJ, Ó Maoldomhnaigh C, Dunne
PJ, et al. Inhibiting Histone Deacetylases in Human Macrophages Promotes
Glycolysis, IL-1β, and T Helper Cell Responses to Mycobacterium
tuberculosis. Front Immunol. 2020;11(July):1–15.
45. Wang X, Tang X, Zhou Z, Huang Q. Histone deacetylase 6 inhibitor
enhances resistance to Mycobacterium tuberculosis infection through
innate and adaptive immunity in mice. Pathog Dis. 2018 Aug;76(6).
46. Giver CR, Shaw PA, Fletcher H, Kaushal D, Pamela G, Omoyege D, et
al. IMPACT-TB*: A Phase II Trial Assessing the Capacity of Low Dose
Imatinib to Induce Myelopoiesis and Enhance Host Anti-Microbial Immunity
Against Tuberculosis. *Imatinib Mesylate per Oral As a Clinical
Therapeutic for TB. Blood [Internet]. 2019 Nov
13;134(Supplement_1):1050. Available from:
https://doi.org/10.1182/blood-2019-130275
47. Tsukaguchi K, de Lange B, Boom WH. Differential regulation of
IFN-gamma, TNF-alpha, and IL-10 production by CD4(+) alphabetaTCR+ T
cells and vdelta2(+) gammadelta T cells in response to monocytes
infected with Mycobacterium tuberculosis-H37Ra. Cell Immunol. 1999
May;194(1):12–20.
48. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G,
et al. Infection of Human Macrophages and Dendritic Cells with
Mycobacterium tuberculosis Induces a Differential Cytokine Gene
Expression That Modulates T Cell Response . J Immunol.
2001;166(12):7033–41.
49. Marino S, Myers A, Flynn JL, Kirschner DE. TNF and IL-10 are major
factors in modulation of the phagocytic cell environment in lung and
lymph node in tuberculosis: a next-generation two-compartmental model. J
Theor Biol [Internet]. 2010 Aug;265(4):586—598. Available from:
https://europepmc.org/articles/PMC3150786
50. Marino S, Kirschner DE. The human immune response to Mycobacterium
tuberculosis in lung and lymph node. J Theor Biol. 2004;227(4):463–86.
51. Sahiratmadja E, Alisjahbana B, de Boer T, Adnan I, Maya A,
Danusantoso H, et al. Dynamic Changes in Pro- and Anti-Inflammatory
Cytokine Profiles and Gamma Interferon Receptor Signaling Integrity
Correlate with Tuberculosis Disease Activity and Response to Curative
Treatment. Infect Immun [Internet]. 2007;75(2):820–9. Available
from: https://iai.asm.org/content/75/2/820
52. Cavalcanti YVN, Brelaz MCA, Neves JKDAL, Ferraz JC, Pereira VRA.
Role of TNF-alpha, IFN-gamma, and IL-10 in the development of pulmonary
tuberculosis. Pulm Med. 2012;2012.
53. Gonzalez-Juarrero M, Kingry LC, Ordway DJ, Henao-Tamayo M, Harton M,
Basaraba RJ, et al. Immune response to mycobacterium tuberculosis and
identification of molecular markers of disease. Am J Respir Cell Mol
Biol. 2009;40(4):398–409.
54. Flesch IEA, Kaufmann SHE. Activation of tuberculostatic macrophage
functions by gamma interferon, interleukin-4, and tumor necrosis factor.
Infect Immun. 1990;58(8):2675–7.
55. van Crevel R, Ottenhoff THM, van der Meer JWM. Innate immunity to
Mycobacterium tuberculosis. Clin Microbiol Rev. 2002 Apr;15(2):294–309.
56. Wigginton JE, Kirschner D. A Model to Predict Cell-Mediated Immune
Regulatory Mechanisms During Human Infection with Mycobacterium
tuberculosis . J Immunol. 2001;166(3):1951–67.
57. Domingo-Gonzalez R, Prince O, Cooper A, Khader SA. Cytokines and
Chemokines in Mycobacterium tuberculosis Infection. Microbiol Spectr.
2016 Oct;4(5).
58. Redford PS, Murray PJ, O’Garra A. The role of IL-10 in immune
regulation during M. tuberculosis infection. Mucosal Immunol. 2011
May;4(3):261–70.
59. Reljic R, Paul MJ, Arias MA. Cytokine therapy of tuberculosis at the
crossroads. Expert Rev Respir Med [Internet]. 2009;3(1):53–66.
Available from: https://doi.org/10.1586/17476348.3.1.53
60. Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant
pulmonary tuberculosis with interferon-gamma via aerosol. Lancet
(London, England). 1997 May;349(9064):1513–5.
61. Koh W-J, Kwon OJ, Suh GY, Chung MP, Kim H, Lee NY, et al. Six-month
therapy with aerosolized interferon-gamma for refractory
multidrug-resistant pulmonary tuberculosis. J Korean Med Sci. 2004
Apr;19(2):167–71.
62. Naftalin CM, Verma R, Gurumurthy M, Hee KH, Lu Q, Yeo BCM, et al.
Adjunctive use of celecoxib with anti-tuberculosis drugs: evaluation in
a whole-blood bactericidal activity model. Sci Rep. 2018;8(1):1–8.
63. von Andrian UH, Mackay CR. T-cell function and migration. Two sides
of the same coin. N Engl J Med. 2000 Oct;343(14):1020–34.
64. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et
al. Initiation of the adaptive immune response to Mycobacterium
tuberculosis depends on antigen production in the local lymph node, not
the lungs. J Exp Med. 2008;205(1):105–15.
65. Harding C V, Boom WH. Regulation of antigen presentation by
Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev
Microbiol. 2010 Apr;8(4):296–307.
66. Giacomini E, Iona E, Ferroni L, Miettinen M, Fattorini L, Orefici G,
et al. Infection of Human Macrophages and Dendritic Cells with
<em>Mycobacterium tuberculosis</em> Induces a
Differential Cytokine Gene Expression That Modulates T Cell Response. J
Immunol [Internet]. 2001 Jun 15;166(12):7033 LP – 7041. Available
from: http://www.jimmunol.org/content/166/12/7033.abstract
67. Trinchieri G. Interleukin-12 and the regulation of innate resistance
and adaptive immunity. Nat Rev Immunol. 2003 Feb;3(2):133–46.
68. Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis
infection. Semin Immunopathol. 2015 May;37(3):239–49.
69. Shen H, Min R, Tan Q, Xie W, Wang H, Pan H, et al. The beneficial
effects of adjunctive recombinant human interleukin-2 for multidrug
resistant tuberculosis. Arch Med Sci. 2015 Jun;11(3):584–90.
70. Saleh MAA, van de Garde EMW, van Hasselt JGC. Host-response
biomarkers for the diagnosis of bacterial respiratory tract infections.
Clin Chem Lab Med. 2019 Mar;57(4):442–51.
71. Fonseca KL, Rodrigues PNS, Olsson IAS, Saraiva M. Experimental study
of tuberculosis: From animal models to complex cell systems and
organoids. PLoS Pathog. 2017 Aug;13(8):e1006421.
72. Van Der Vaart M, Korbee CJ, Lamers GEM, Tengeler AC, Hosseini R,
Haks MC, et al. The DNA damage-regulated autophagy modulator DRAM1 links
mycobacterial recognition via TLP-MYD88 to authophagic defense. Cell
Host Microbe. 2014;15(6):753–67.
73. Korbee CJ, Heemskerk MT, Kocev D, van Strijen E, Rabiee O, Franken
KLMC, et al. Combined chemical genetics and data-driven bioinformatics
approach identifies receptor tyrosine kinase inhibitors as host-directed
antimicrobials. Nat Commun. 2018 Jan;9(1):358.
74. Tezera LB, Bielecka MK, Chancellor A, Reichmann MT, Shammari B Al,
Brace P, et al. Dissection of the host-pathogen interaction in human
tuberculosis using a bioengineered 3-dimensional model. Elife.
2017;6:1–19.
75. Thacker V V., Dhar N, Sharma K, Barrile R, Karalis K, McKinney JD. A
lung-on-chip model of early m. Tuberculosis infection reveals an
essential role for alveolar epithelial cells in controlling bacterial
growth. Elife. 2020;9:1–73.
76. Gumbo T, Pasipanodya JG, Nuermberger E, Romero K, Hanna D.
Correlations Between the Hollow Fiber Model of Tuberculosis and
Therapeutic Events in Tuberculosis Patients: Learn and Confirm. Clin
Infect Dis [Internet]. 2015;61(suppl_1):S18–24. Available from:
https://doi.org/10.1093/cid/civ426
77. Meijer AH. Protection and pathology in TB: learning from the
zebrafish model. Semin Immunopathol. 2016;38(2):261–73.
78. H. Meijer A, P. Spaink H. Host-Pathogen Interactions Made
Transparent with the Zebrafish Model. Curr Drug Targets.
2011;12(7):1000–17.
79. Myllymäki H, Bäuerlein CA, Rämet M. The Zebrafish Breathes New Life
into the Study of Tuberculosis. Front Immunol. 2016;7:196.
80. Kanwal Z, Wiegertjes GF, Veneman WJ, Meijer AH, Spaink HP.
Comparative studies of Toll-like receptor signalling using zebrafish.
Dev Comp Immunol. 2014 Sep;46(1):35–52.
81. Roca FJ, Whitworth LJ, Redmond S, Jones AA, Ramakrishnan L. TNF
Induces Pathogenic Programmed Macrophage Necrosis in Tuberculosis
through a Mitochondrial-Lysosomal-Endoplasmic Reticulum Circuit. Cell.
2019 Sep;178(6):1344-1361.e11.
82. Carvalho R, de Sonneville J, Stockhammer OW, Savage NDL, Veneman WJ,
Ottenhoff THM, et al. A high-throughput screen for tuberculosis
progression. PLoS One. 2011 Feb;6(2):e16779.
83. Johansen MD, Daher W, Roquet-Banères F, Raynaud C, Alcaraz M, Maurer
FP, et al. Rifabutin Is Bactericidal against Intracellular and
Extracellular Forms of Mycobacterium abscessus. Antimicrob Agents
Chemother. 2020 Oct;64(11).
84. Ordas A, Raterink R-J, Cunningham F, Jansen HJ, Wiweger MI,
Jong-Raadsen S, et al. Testing tuberculosis drug efficacy in a zebrafish
high-throughput translational medicine screen. Antimicrob Agents
Chemother. 2015 Feb;59(2):753–62.
85. van Wijk RC, Hu W, Dijkema SM, van den Berg DJ, Liu J, Bahi R, et
al. Anti-tuberculosis effect of isoniazid scales accurately from
zebrafish to humans. Br J Pharmacol. 2020;177(24):5518–33.
86. Mestas J, Hughes CCW. Of mice and not men: differences between mouse
and human immunology. J Immunol. 2004 Mar;172(5):2731–8.
87. Plumlee CR, Duffy FJ, Gern BH, Delahaye JL, Cohen SB, Stoltzfus CR,
et al. Ultra-low Dose Aerosol Infection of Mice with Mycobacterium
tuberculosis More Closely Models Human Tuberculosis. Cell Host Microbe.
2021 Jan;29(1):68-82.e5.
88. Zwep LB, Duisters KLW, Jansen M, Guo T, Meulman JJ, Upadhyay PJ, et
al. Identification of high-dimensional omics-derived predictors for
tumor growth dynamics using machine learning and pharmacometric
modeling. CPT pharmacometrics Syst Pharmacol. 2021 Apr;10(4):350–61.
89. van Hasselt JGC, Rahman R, Hansen J, Stern A, Shim J V, Xiong Y, et
al. Transcriptomic profiling of human cardiac cells predicts protein
kinase inhibitor-associated cardiotoxicity. Nat Commun. 2020
Sep;11(1):4809.
90. Shim J V, Chun B, van Hasselt JGC, Birtwistle MR, Saucerman JJ,
Sobie EA. Mechanistic Systems Modeling to Improve Understanding and
Prediction of Cardiotoxicity Caused by Targeted Cancer Therapeutics.
Front Physiol. 2017;8:651.
91. Yang H-J, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not
in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect
Microbiol [Internet]. 2021;11:134. Available from:
https://www.frontiersin.org/article/10.3389/fcimb.2021.613149
92. Grange JM, Winstanley PA, Davies PD. Clinically significant drug
interactions with antituberculosis agents. Drug Saf. 1994
Oct;11(4):242–51.
93. Mehta K, Ravimohan S, Pasipanodya JG, Srivastava S, Modongo C,
Zetola NM, et al. Optimizing ethambutol dosing among HIV/tuberculosis
co-infected patients: a population pharmacokinetic modelling and
simulation study. J Antimicrob Chemother. 2019 Oct;74(10):2994–3002.
94. Hanke N, Türk D, Selzer D, Ishiguro N, Ebner T, Wiebe S, et al. A
Comprehensive Whole-Body Physiologically Based Pharmacokinetic
Drug–Drug–Gene Interaction Model of Metformin and Cimetidine in
Healthy Adults and Renally Impaired Individuals. Clin Pharmacokinet
[Internet]. 2020;59(11):1419–31. Available from:
https://doi.org/10.1007/s40262-020-00896-w
95. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, et
al. Population pharmacokinetics of metformin in healthy subjects and
patients with type 2 diabetes mellitus: simulation of doses according to
renal function. Clin Pharmacokinet. 2013 May;52(5):373–84.
96. Palsson S, Hickling TP, Bradshaw-Pierce EL, Zager M, Jooss K,
O’Brien PJ, et al. The development of a fully-integrated immune response
model (FIRM) simulator of the immune response through integration of
multiple subset models. BMC Syst Biol [Internet]. 2013;7(1):1.
Available from: BMC Systems Biology
97. Sud D, Bigbee C, Flynn JL, Kirschner DE. Contribution of CD8 + T
Cells to Control of Mycobacterium tuberculosis Infection . J Immunol.
2006;176(7):4296–314.
98. Martin KR, Barua D, Kauffman AL, Westrate LM, Posner RG, Hlavacek
WS, et al. Computational model for autophagic vesicle dynamics in single
cells. Autophagy. 2013;9(1):74–92.
99. Tavassoly I, Parmar J, Shajahan-Haq AN, Clarke R, Baumann WT, Tyson
JJ. Dynamic modeling of the interaction between autophagy and apoptosis
in mammalian cells. CPT Pharmacometrics Syst Pharmacol.
2015;4(4):263–72.
100. Holczer M, Hajdú B, Lőrincz T, Szarka A, Bánhegyi G, Kapuy O. A
double negative feedback loop between MTORC1 and AMPK kinases guarantees
precise autophagy induction upon cellular stress. Int J Mol Sci.
2019;20(22).
101. Liu B, Oltvai ZN, Baylr H, Silverman GA, Pak SC, Perlmutter DH, et
al. Quantitative assessment of cell fate decision between autophagy and
apoptosis. Sci Rep. 2017;7(1):1–14.
102. Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S,
Encalada R, Moreno-Sánchez R, Saavedra E. Modeling cancer glycolysis.
Biochim Biophys Acta. 2011 Jun;1807(6):755–67.
103. Mosca E, Alfieri R, Maj C, Bevilacqua A, Canti G, Milanesi L.
Computational modeling of the metabolic states regulated by the kinase
Akt. Front Physiol. 2012;3 NOV(November):1–26.
104. de Steenwinkel JEM, de Knegt GJ, ten Kate MT, van Belkum A,
Verbrugh HA, Kremer K, et al. Time-kill kinetics of anti-tuberculosis
drugs, and emergence of resistance, in relation to metabolic activity of
Mycobacterium tuberculosis. J Antimicrob Chemother. 2010
Dec;65(12):2582–9.
105. McGrath M, Gey van Pittius NC, van Helden PD, Warren RM, Warner DF.
Mutation rate and the emergence of drug resistance in Mycobacterium
tuberculosis. J Antimicrob Chemother [Internet]. 2014 Feb
1;69(2):292–302. Available from: https://doi.org/10.1093/jac/dkt364
106. Chen EP, Bondi RW, Michalski PJ. Model-based Target Pharmacology
Assessment (mTPA): An Approach Using PBPK/PD Modeling and Machine
Learning to Design Medicinal Chemistry and DMPK Strategies in Early Drug
Discovery. J Med Chem. 2021;
107. Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology
Strategies for the Early Clinical Development of Bispecific Antibodies
in Oncology. Clin Pharmacol \& Ther [Internet].
2020;108(3):528–41. Available from:
https://ascpt.onlinelibrary.wiley.com/doi/abs/10.1002/cpt.1961
108. Hardiansyah D, Ng CM. Quantitative Systems Pharmacology Model of
Chimeric Antigen Receptor T-Cell Therapy. Clin Transl Sci.
2019;12(4):343–9.
109. Ernest JP, Strydom N, Wang Q, Zhang N, Nuermberger E, Dartois V, et
al. Development of New Tuberculosis Drugs: Translation to Regimen
Composition for Drug-Sensitive and Multidrug-Resistant Tuberculosis.
Annu Rev Pharmacol Toxicol. 2021;61:495–516.
110. Ding Y, Raterink R-J, Marín-Juez R, Veneman WJ, Egbers K, van den
Eeden S, et al. Tuberculosis causes highly conserved metabolic changes
in human patients, mycobacteria-infected mice and zebrafish larvae. Sci
Rep. 2020 Jul;10(1):11635.
111. Ahmed M, Thirunavukkarasu S, Rosa BA, Thomas KA, Das S,
Rangel-Moreno J, et al. Immune correlates of tuberculosis disease and
risk translate across species. Sci Transl Med [Internet].
2020;12(528). Available from:
https://stm.sciencemag.org/content/12/528/eaay0233
112. van Steijn L, Verbeek FJ, Spaink HP, Merks RMH. Predicting
Metabolism from Gene Expression in an Improved Whole-Genome Metabolic
Network Model of Danio rerio. Zebrafish. 2019 Aug;16(4):348–62.
113. Walker NF, Meintjes G, Wilkinson RJ. HIV-1 and the immune response
to TB. Future Virol. 2013 Jan;8(1):57–80.
114. McCallum AD, Pertinez HE, Else LJ, Dilly-Penchala S, Chirambo AP,
Sheha I, et al. Intrapulmonary Pharmacokinetics of First-line
Anti-tuberculosis Drugs in Malawian Patients With Tuberculosis. Clin
Infect Dis. 2020;(Mic):1–9.
115. DiNardo AR, Nishiguchi T, Grimm SL, Schlesinger LS, Graviss EA,
Cirillo JD, et al. Tuberculosis endotypes to guide stratified
host-directed therapy. Med [Internet]. 2021;2(3):217–32. Available
from: https://doi.org/10.1016/j.medj.2020.11.003
116. DiNardo AR, Gandhi T, Heyckendorf J, Grimm SL, Rajapakshe K,
Nishiguchi T, et al. Gene expression signatures identify biologically
and clinically distinct tuberculosis endotypes. medRxiv [Internet].
2021; Available from:
https://www.medrxiv.org/content/early/2021/02/07/2020.05.13.20100776
117. Lazarou G, Chelliah V, Small BG, Walker M, van der Graaf PH,
Kierzek AM. Integration of Omics Data Sources to Inform Mechanistic
Modeling of Immune-Oncology Therapies: A Tutorial for Clinical
Pharmacologists. Clin Pharmacol Ther. 2020;107(4):858–70.
118. Klinke DJ, Wang Q. Inferring the impact of regulatory mechanisms
that underpin CD8+ T cell control of B16 tumor growth in vivo using
mechanistic models and simulation. Front Pharmacol. 2017;7(JAN):1–22.
119. Coletti R, Leonardelli L, Parolo S, Marchetti L. A QSP model of
prostate cancer immunotherapy to identify effective combination
therapies. Sci Rep [Internet]. 2020;10(1):9063. Available from:
https://doi.org/10.1038/s41598-020-65590-0