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Abstract: In this paper, we consider the dispersionless B type Kadomtsev-Petviashvili (dBKP)

equation through quasi classical limit of BKP equation. We investigate the existence of one-parameter

point transformations in which the dBKP equation remains invariant by admitting a five-dimensional

Lie algebra. For the admitted Lie symmetries, we calculate the one-dimensional optimal system,

a necessary analysis to perform the reduction process. Using this, we obtain various closed-form

similarity solutions for the dBKP equation. In addition to this, we also derive the associated

conservation laws of this equation through Ibragimov’s method.
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1 Introduction

Dispersionless equations especially dispersionless Kadomtsev-Petviashvili (dKP) hierarchies, a type of

non-linear integrable system has been widely studied in the recent past. This equations posses various

mathematical richness and physical importance such as the relation with topological field theory,

Whitham hierarchy, string theory, two dimensional gravity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], Orolov functions

[5], solutions through hodograph transformations [7, 8], tau function theory and dispersionless analogue

of Virasoro constrains [11]. Initially, Lebdev, Manin and Zakhrov [12, 13] investigated this kind of

systems through quasi classical limit. Later, Krichever [14] derived the dKP hierarchy through the

construction of dispersionless Lax equations. More interestingly, J H Chang et al. [15] studied the

correspondence of dKP and dmKP hierarchies through the construction of dispersionless Miura map.

Recently, D J Zhang [16] et al. investigated the iso and non isospectral flows of dKP hierarchies

by introducing Lax triad approach. Many of the interesting properties are yet to be investigated for
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these types of equations such as underlying Lie algebraic structures, similarity reductions and solutions

using Lie point symmetries, integrability properties and solutions via discretization, Painlevé analysis,

differential-difference analogues etc.

Moreover, dispersionless version of some of the vital integrable equations are still not yet studied in

the direction of various mathematical perspectives. In this point of view, we are motivated to consider

the dispersionless B type KP(dBKP) equation and study its symmetries and particular solutions. The

BKP equation shows significant physical importance in the field of fluid mechanics, plasma physics,

optical fibres and solid state physics. Moreover, BKP system posses similar mathematical properties

in parallel with KP system such as Lax formulation, soliton, Hirota bilinear equations, tau-function,

fermion representation, quasi-periodic solutions etc. This motivates us to consider the dispersionless

analogue of BKP equation.

In this piece of work, we consider dBKP equation by taking quasi classical limit on BKP equation.

We also obtained various particular solutions of dBKP equation using Lie point symmetries. Lie

method is a powerful mathematical tool to derive the exact solutions for nonlinear differential equations

[17, 18, 19]. Specifically, Lie point symmetries enable one to find similarity transformations, which is

used by researchers to introduce new dependent and independent variables. When applying similarity

variable into PDEs, the number of independent variables is reduced, but order of the PDEs remains the

same. By applying sequence of reduction on the reduced PDEs we finally end up with ODEs. In the

same way, repeatedly implementing the Lie symmetry technique on the reduced ODEs leads to lower

order ODEs from which one can compute the particular solutions to the given system. In particular,

we construct the one-dimensional optimal system for the obtained Lie group [20] to avoid the same

class of solutions. This is achieved by constructing the adjoint representation of the symmetry group

[21, 22, 23, 24, 25, 26, 27]. Nowadays researchers are using powerful Computer Algebra Systems (CAS)

like Maple and Mathematica (commercial), etc. to do the calculations over the symmetry rapidly. In

this work, for the calculation of the symmetries, we use the Mathematica add-on Sym [28, 29, 30, 31].

The plan of the paper is as follows, in Section 2, we derive Lie point symmetries of dBKP and

obtain the associated optimal class of vector fields, the similarity solutions of dBKP are presented in

Section 3. In section 4, using Ibragimov’s method, we obtain the conservation laws of dBKP equation.

Finally, in Section 5 we discuss our results and we draw out our conclusions.

2 Lie symmetry classification

Consider the BKP equation as

ut = −5

9

[
1

5
uxxxxx + 3uuxxx + 3uxuxx + 9u2ux − uxxy − 3uuy − 3ux∂

−1uy − ∂−1uyy

]
(2.1)
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Now, using quasi classical limit i.e. by averaging the independent and field variables as εx = X, εy =

Y, εt = T in (2.1) and allow ε→ 0, we obtain the dBKP as follows

UT = −5U2UX +
5

3
UUY +

5

3
UX∂

−1UY +
5

9
∂−1UY Y (2.2)

To perform Lie symmetry analysis, it is convenient to rewrite (2.2) without nonlocal terms. Hence,

substituting U = VX in to equation (2.2), we obtain

VTX + 5VX
2VXX −

5

3
VXVXY −

5

3
VXXVY −

5

9
VY Y = 0, (2.3)

The symmetry conditions for the latter equation are

250a1(T )∂T − (50V a1
′ + 30XY a1

′′ + 9Y 3a1
′′′)∂V + (50Xa1

′ + 45Y 2a1
′′)∂X + 150Y a1

′∂Y ,

−(10Xa2(T )′ + 9Y 2a2
′′)∂V + 30Y a2

′∂X + 150a2∂Y ,

−3Y a3(T )′∂V + 5Y a3∂X ,

3V ∂V + 2X∂X + Y ∂Y ,

a4(T )∂V .


(2.4)

To reduce the number of arbitrary functions in the Lie point symmetries the equation (2.3) can be

rewritten as

WX + 5VX
2VXX −

5

9
VY Y = 0

Z −W − 5

3
VXVY = 0

Z − VT = 0

 (2.5)

The system of equation (2.5) provides the following Lie point symmetries

Γ1 = ∂T (2.6a)

Γ2 = ∂X (2.6b)

Γ3 = ∂Y (2.6c)

Γ4 = 2V ∂V +
3

2
W∂W +

3

2
Z∂Z +

1

2
T∂T +

3

2
X∂X + Y ∂Y (2.6d)

Γ5 = f(T )∂V + f ′(T )(∂W + ∂Z) (2.6e)

We observe that the presence of arbitrary function f(T ) in the symmetry vector Γ5, indicates there

are infinite number of solutions depending only on temporal variable. These kind of solutions do not

play any role in determining the exact solution of the equation (2.3). Hence, our study restricted

with the vector fields Γ1 to Γ4 only. Now, using these vector fields, we construct the commutator

table, the associated adjoint representation and one-dimensional optimal system [17, 18, 32, 33, 34,

36, 37, 38, 39, 40, 41] of (2.5), sufficient combination of vector fields (2.6). This allows us to find

similarity transformations, reductions and exact solutions of (2.5). The commutator table and adjoint

representation are given in table (1) and (2) respectively.
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Table 1: Commutator Table

[ΓI ,ΓJ ] Γ1 Γ2 Γ3 Γ4

Γ1 0 0 0 Γ1
2

Γ2 0 0 0 3Γ2
2

Γ3 0 0 0 Γ3

Γ4 −Γ1
2 −3Γ2

2 −Γ3 0

Table 2: Adjoint representation

[
Ad(eεΓi)Γj

]
Γ1 Γ2 Γ3 Γ4

Γ1 Γ1 Γ2 Γ3 Γ4 − ε
2Γ1

Γ2 Γ1 Γ2 Γ3 Γ4 − 3ε
2 Γ2

Γ3 Γ1 Γ2 Γ3 Γ4 − εΓ3

Γ4 e
ε
2 Γ1 e

3ε
2 Γ2 eεΓ3 Γ4

Based on the commutator table (1) and adjoint representation table (2), the one dimensional

optimal system are

Γ1, Γ2, Γ3, Γ4, Γ2 + c1Γ1, Γ3 + c1Γ2, Γ3 + c1Γ1, Γ3 + c2Γ2 + c1Γ1.
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3 Similarity solutions

In this section, we compute systematically the invariant solutions for (2.5) corresponding to each

optimal system, tabulated in Table (3). In particular, we are motivated in obtaining the invariant

solutions with respect to the scaling symmetries of the reduced equations of (2.5) which leads

interesting solutions to the dBKP equation (2.2) by back substitution. This is due to the fact that the

other symmetries give the solutions of non novelty. Hence, we are forced to make use of the scaling

symmetries for the reduction of (2.5) throughout this literature. Moreover, we perform a detailed work

for obtaining the similarity solutions of (2.5) using the symmetry Γ3 + c1Γ2 discussed in section 4.1.

For the other symmetries in Table (3), we calculate the similarity solutions directly from the reduced

equations of (2.5), since it carries the similar computations.
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−
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To construct the nontrivial solutions of (2.5), we are intended to consider the reduced equations

I, III, IV, V I and V II as listed in Table (3).

3.1 Reduction for (V I)

Here we perform a detailed analysis in tracing the solutions of (2.3) using the symmetry vector field

Γ3 + c1Γ2.

The associated characteristic equation of this vector field is given by

dT

0
=
dX

c1
=
dY

1
=
dV

0
=
dW

0
=
dZ

0

The solution of the above characteristic equation give the transformation as follows

α = T, β = Y − c1X,V (T,X, Y ) = G(α, β), W (T,X, Y ) = H(α, β), Z(T,X, Y ) = J(α, β)

Using the above transformations the equation (2.5) can be reduced as

c1Hβ +
5

9
Gββ − 5c4

1G
2
βGββ = 0, (3.1a)

H − J − 5

3
c1G

2
β = 0, (3.1b)

J −Gα = 0. (3.1c)

Rewriting (3.1), we arrive

c1Hβ +
5

9
Gββ − 5c4

1G
2
βGββ = 0, (3.2a)

H −Gα −
5

3
c1G

2
β = 0. (3.2b)

The symmetries of equation (3.2) are listed as

Γ61 = ∂α, Γ62 = ∂β, Γ63 = ∂G, (3.3)

Γ64 = α∂α + β∂β +G∂G. (3.4)

For further reduction, we consider the scaling symmetry (3.4) and the corresponding similarity

variables obtained as r = β
α , G = αg(r) and H = h(r). Using these similarity variables, we get the

reduced form of (3.2) is

g − h− rg′ + 5

3
c1g
′2 = 0, (3.5a)

c1h
′ +

5

9
g′′ − 5c1

4g′
2
g′′ = 0. (3.5b)

The solution of the latter system (3.5) is

g = I1 +
135c1r ± 2

√
5(10− 9c1r)

3
2

405c1
3

, (3.6a)

h = I1 +
225− 135c1r −

√
5(10− 9c1r)

3
2

405c1
3

. (3.6b)
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From (3.6), one can deduce the solution of (2.3) as given by

V = T

(
I1 +

135c1(Y−c1XT )± 2
√

5(10− 9c1(Y−c1XT ))
3
2

405c1
3

)
(3.7)

Then the solution of the original equation (2.2) is given by

U =
1

15c1
2

[
5 +

(
5

(
10− 9c1

(
Y − c1X

T

))) 1
2

]
. (3.8)

3.2 Reduction for (IV ) :

The similarity variables and resultant equation (IV ), which are obtained by applying the symmetry

Γ4, are tabulated in Table (3). One can rewrite the system of (IV ) as

Hα + 5Gα
2Gαα −

5

9
Gββ = 0, (3.9a)

H − 4G+ 2βGβ + 3αGα +
5

3
GαGβ = 0. (3.9b)

The Lie point symmetries of equation (3.9) are given below

Γ41 = ∂G + 4∂H , (3.10)

Γ42 = −9β∂G − 18β∂H + 5∂α, (3.11)

Γ43 = 3G∂G + 3H∂H + β∂β + 2α∂α. (3.12)

Using the scaling symmetry Γ43 with the associated similarity variables γ = β√
α
, H = α

3
2h(γ) and

G = α
3
2 g(γ), the reduced system of (3.9) given as

1215g3 + 216h− 135γ3g′
3 − 72γh′ − 80g′′ + 45γ4g′

2
g′′

+405γg2(γg′′ − 5g′)− 135γ2gg′(2γg′′ − 7g′) = 0, (3.13a)

6h+ γ(3− 5g′)g′ + 3g(1 + 5g′) = 0. (3.13b)

Further rewriting the above equation we get a non-solvable second order nonlinear ODE as

1215g3 − 135γ3g′
3

+ 4(9γ2 − 20)g′′ + 405γg2(γg′′ − 5g′)− 12γg′(10γg′′ + 3)

+15γg′
2
(3γ3g′′ + 20) + 9g(105γ2g′

2
+ 20γg′′ − 60g′ − 30γ3g′g′′) = 0 (3.14)

3.3 Reduction using Γ1 :

The associated similarity variables of Γ1, one can deduce as

α = X,β = Y, V (T,X, Y ) = G(α, β), W (T,X, Y ) = H(α, β), Z(T,X, Y ) = 0.
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Using the above transformations, (2.5) can be reduced in to the following system of equations which

also listed in the Table (3).

Hα −
5

9
Gββ + 5Gα

2Gαα = 0, (3.15a)

H +
5

3
GαGβ = 0. (3.15b)

Further, we find the symmetry vector fields of the system (3.15) as

Γ11 = ∂α, Γ12 = ∂β, Γ13 = ∂G, (3.16)

Γ14 = β∂β −G∂G − 3H∂H , (3.17)

Γ15 = α∂α + 2G∂G + 3H∂H . (3.18)

Here, the symmetries Γ14 and Γ15 are scaling and leads to a nontrivial solution for the equation (2.2).

The reductions of these equations are listed the following table.
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Rewriting the system (IX) as

5g′
2
g′′ +

5

3
gg′′ +

5

3
gg′

2 − 10

9
g = 0. (3.19)

The Lie point symmetries of the equation (3.19) are obtained as ∂α , α∂α + 2g∂g. For the scaling

symmetry α∂α + 2g∂g, we have two set of values for g and h as follows:

{g = −1
3α

2, h = 10
27α

3}, {g = 1
12α

2, h = 5
196α

3}. For these two set of g we have obtained solutions

U = −X
3

9Y
, (3.20a)

U = − X3

36Y
(3.20b)

respectively to the equation (2.2) by using back substitution into series of similarity variables.

Next, we consider the system (X) and rewriting this we get

1

72
g′′ +

1

4
gg′ − g3 = 0 (3.21)

The Lie point symmetries of the equation (3.21) are derived as ∂β , β∂β − g∂g. For the scaling

symmetry β∂β − g∂g, we construct the following two sets of solution based on values for g and h:

{g = − 1
3β , h = 10

27β3 } and {g = 1
12β , h = 5

216β3 } where h can be obtained from the equation (X).

For these two expressions of g, we have solutions

U = −X
3

9Y
, and (3.22)

U = − X3

36Y
(3.23)

respectively to the equation (2.2).

Next, rewriting (XI), we get

486g3+54r3g′
3−g′′−6r2g′g′′+81rg2(10g′+rg′′)+g′

2
(−30r+9r4g′′)+9g(42r2g′

2−rg′′+6g′(−1+r3g′′)) = 0

(3.24)

By performing Lie symmetry analysis for the equation (3.24), we get only one vector field as g∂g− r∂r
and the corresponding similarity variable for (3.24) is obtained as

g =
k

r
, k is a constant. (3.25)

Using (3.25) in (3.24), we get

k(1 + 3k)(12k − 1) = 0. (3.26)

For the choice of k = −1
3 , we get the following solution of (3.24)

g =
−1

3r
. (3.27)

From (3.27), one can deduce the solution of (2.2) by back substitution method as

U = −2X

3Y
. (3.28)

For all other choices of k, one can obtain similar form as above solution.
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3.4 Reductions for (III)

The equation (III) can be rewritten as

Gαβ + 5Gβ
2Gββ = 0 (3.29)

The Lie point symmetries of equation (3.29) are derived as

Γ31 = ∂α, Γ32 = ∂β, Γ33 = f(α)∂G, (3.30)

Γ34 = 3α∂α + β∂β, (3.31)

Γ35 = −2α∂α +G∂G, (3.32)

Case 1. For further reduction, take the scaling symmetry 3α∂α+β∂β. The corresponding similarity

variables are r = β

α
1
3
, G = αg(r). Therefore the equation (3.29) reduced to the following equation

g′ + rg′′ = 15g′
2
g′′ (3.33)

After an integration, the equation (3.33) becomes

rg′ = 5g′
3

+ I1 (3.34)

After solving the equation (3.34), one can easily find the solution of the equation (2.2).

Case 2. If we take the scaling symmetry −2α∂α + G∂G then the corresponding similarity variable

is G = g(β)√
α

. Therefore, the equation (3.29) reduced to the following equation

g′ = 10g′′ (3.35)

The solution of the equation (3.35) becomes

g = ±10

3

(
β

5
+ 2I1

) 3
2

+ I2. (3.36)

From the equation (3.36), one can find the solution of the equation (2.2) as

U =
±
(
X
5 + 2I1

) 1
2

√
T

. (3.37)

3.5 Reduction for (V II)

By means of J(α, β) = −c1Gβ the equation (V II) can be rewritten as

H + c1Gβ +
5

3
GβGα = 0 (3.38)

Hα −
5

9
Gββ + 5Gα

2Gαα = 0 (3.39)
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The Lie point symmetries of equation (3.38) are

Γ71 = ∂α, Γ72 = ∂β, Γ73 = ∂G,Γ74 = α∂α + β∂β +G∂G.

For further reduction, take the scaling symmetry α∂α + β∂β + G∂G. The corresponding similarity

variables are r = β
α , G = αg(r) and H = h(r). Thus, we obtain the reduced system as

h+ c1g
′ +

5

3
gg′ − 5

3
rg′

2
= 0 (3.40a)

rh′ +
5

9
g′′ − 5r2g2g′′ + 10r3gg′g′′ − 5r4g′

2
g′′ = 0 (3.40b)

Solving the above system, we get

g = I1 + I2r (3.41)

h =
1

3
(5rI2

2 − 5I2(I1 + I2r)− 3c1I2) (3.42)

By successive back substitutions, we obtain solution of (2.2).

U = I1 + I2

(
Y − c1T

X

)(
1− 1

X

)
. (3.43)

We illustrate this solution behaviour graphically at the singular point X = 0 by means of the

following graphs Fig.(3.5.1), Fig.(3.5.2), Fig.(3.5.3) and Fig.(3.5.4) at different time snapshots. Here,

we observe that the wave profile moves along positive Y axis as the time variable T evolves.
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Fig.(3.5.1) Fig.(3.5.2)

I1 = 0, I2 = 1, c1 = 1, T = 0 I1 = 0, I2 = 1, c1 = 1, T = 5

Fig.(3.5.3) Fig.(3.5.4)

I1 = 0, I2 = 1, c1 = 1, T = 10 I1 = 0, I2 = 1, c1 = 1, T = 20

4 Conservation laws

It is understood that integrable PDEs admit conservation laws as one of their essential requirements.

E. Noether [42] established that the correspondence between symmetries of differential equations and

conservation laws. However to obtain this one need to identify the associated Euler-Lagrange equations

of the differential equations. This approach forces us to consider a restricted types of specific differential

equations only. Recently N.H. Ibragimov’s theory [43] enables to derive the conservation laws for

broader class of differential equations. This method motivated us to derive the conserved densities of

dBKP equation. Using the following Ibragimov’s theorem we derive the conserved densities of dBKP

equation.

Theorem 1. Any infinitesimal symmetry

Γ = ξT∂T + ξX∂X + ξY ∂Y + η1∂V + η2∂W + η3∂Z
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of equation (2.5) leads to a conservation law Di(C
i) = 0 constructed by the formula

Ci = ξiL + Gα

[(
∂L

∂ui
α

)
−Dj

(
∂L

∂uij
α

)
+ DjDk

(
∂L

∂uijk
α

)
− . . .

]
+Dj(G

α)

[(
∂L

∂uijα

)
−Dk

(
∂L

∂uijkα

)
+ . . .

]
+DjDk(G

α)

[(
∂L

∂uijkα

)
− . . .

]
, (4.1)

where Gα = ηα − ξjujα

A local conservation law for the dBKP Equation (2.5) is a continuity equation

DT (C1) +DX(C2) +DY (C3) = 0. (4.2)

The formal Lagrangian of the system of equation (2.5) is written as

L = φ1 (WX + 5 VX
2VXX −

5

9
VYY ) + φ2 (Z −W − 5

3
VX VY ) + φ3 (Z −VT ) (4.3)

By taking variational derivative on (4.3) we obtain the following adjoint equations as follows:

F1
∗ =

δL

δV
= φ3,T +

10

3
φ2VXY +

5

3
φ2XVY +

5

3
φ2,Y VX + 5φ1,XXVX

2 + 10φ1,XVXVXX (4.4)

F2
∗ =

δL

δW
= −φ1,X − φ2 (4.5)

F3
∗ =

δL

δZ
= φ2 + φ3 (4.6)

where φ1, φ2 and φ3 can be determined by Fi
∗ = 0 for i = 1, 2, 3. This gives an over determined system

of φ1, φ2 and φ3 and solving them we get φ1 = f(t)y, φ2 = φ3 = 0. Here, the arbitrary function f(t)

confirms the existence of infinitely many conserved densities.

Case (i): For the infinitesimal symmetry ∂T . The corresponding extended operator are given as follows

ξ1 = 1, ξ2 = ξ3 = η1 = η2 = η3 = 0, G1 = −VT , G2 = −WT and G3 = −ZT . The equation (4.1)

gives the following bellow conserved vectors

C1 = L (4.7)

C2 = 5VTVX
2φ1X − 5VTXVX

2φ1 −WTφ1

C3 =
5

9
VTY φ1 −

5

9
VTφ1Y (4.8)

Case (ii): For the infinitesimal symmetry ∂X . The corresponding extended operator are given as

follows ξ2 = 1, ξ1 = ξ3 = η1 = η2 = η3 = 0, G1 = −VX , G2 = −WX and G3 = −ZX . The equation

(4.1) gives the following bellow conserved vectors

C1 = 0 (4.9)

C2 = L + 5 VX
3φ1X − 5VXX VX

2φ1 −WXφ1

C3 =
5

9
VXY φ1 −

5

9
VXφ1Y (4.10)
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Case (iii):Here, we consider the infinitesimal symmetry ∂Y . The corresponding extended operator are

given as follows ξ3 = 1, ξ1 = ξ2 = η1 = η2 = η3 = 0, G1 = −VY , G2 = −WY and G3 = −ZY . The

equation (4.1) gives the following bellow conserved vectors

C1 = 0

C2 = 5VY VX
2φ1X − 5VY XVX

2φ1 −WY φ1

C3 = L +
5

9
VYY φ1 −

5

9
VY φ1Y (4.11)

Case (iv): Next, we consider the infinitesimal symmetry 2V ∂V + 3
2W∂W+ 3

2Z∂Z+ 1
2T∂T+ 3

2X∂X+Y ∂Y .

The corresponding extended operator are given as follows ξ1 = 1
2T, ξ

2 = 3
2X, ξ

3 = Y, η1 =

2V, η2 = 3
2W, η

3 = 3
2Z, G

1 = 2V −
(

1
2VT + 3

2VX + Y VY
)
, G2 = 3

2W −
(

1
2WT + 3

2WX + YWY

)
and

G3 = 3
2Z −

(
1
2ZT + 3

2ZX + Y ZY
)
. The equation (4.1) gives the following bellow conserved vectors

C1 = 0

C2 = −5

(
2V −

(
1

2
TVT +

3

2
XVX + Y VY

))
VX

2φ1X +

(
3

2
W −

(
1

2
WT +

3

2
WX + YWY

))
φ1

+5VX
2

(
2VX −

1

2
TVTX −

3

2
VX −

3

2
XVXX − Y VXY

)
φ1

C3 = −5

9

(
2VY −

1

2
TVTY −

3

2
XVXY − Y VY Y − VY

)
φ1 +

5

9

(
2V −

(
1

2
VT +

3

2
VX + Y VY

))
φ1Y

Case (v): Finally, for the infinitesimal symmetry h(t)∂V + h′(t)∂W + h′(t)∂Z . The corresponding

extended operator are given as follows ξ1 = ξ2 = ξ3 = 0, η1 = h(t), η2 = η3 = h′(t), G1 =

h(t), G2 = h′(t) and G3 = h′(t). The equation (4.1) gives the following bellow conserved vectors

C1 = 0

C2 = −5h(t)VX
2φ1X + h′(t)φ1

C3 =
5

9
h′(t)φ1Y

5 Conclusions

In this work we performed a detailed analysis of the symmetry properties for the dBKP equation.

We found that the dBKP equation is invariant under the action of a five-dimensional Lie group

of one-parameter point transformations. The infinitesimal generators of the Lie group are used to

determine the one-dimensional optimal system for the dBKP equation.

From the Lie point symmetries we derive the Lie invariants which define the similarity solutions,

necessary to reduce and simplify the differential equation. We performed a detailed analysis on the

reduction process and we were able to find new similarity solutions for the dBKP equation.
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This analysis contributes on the subject of the application of Lie point symmetries on nonlinear

differential equations. We found that we were able to construct closed-form solutions. Finally, using

point symmetries, we derived the conservation laws of dBKP equations through Ibragimov’s method.
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