References
1. Mittler, R., Abiotic stress, the field environment and stress
combination. Trends Plant Sci 2006, 11 (1), 15-9.
2. Mittler, R.; Finka, A.; Goloubinoff, P., How do plants feel the heat?Trends Biochem Sci 2012, 37 (3), 118-25.
3. Zhai, Y.; Wang, H.; Liang, M.; Lu, M. J. E.; Botany, E., Both
silencing- and over-expression of pepper CaATG8c gene compromise plant
tolerance to heat and salt stress. 2017 .
4. Neetika, K.; Harsh, C.; Paramjit, K.; Keqiang, W. J. P. O., Wheat
Chloroplast Targeted sHSP26 Promoter Confers Heat and Abiotic
Stress Inducible Expression in Transgenic Arabidopsis Plants.2013, 8 (1), e54418.
5. Balfagón, D.; Zandalinas, S. I.; BaliO, P.; Muriach, M.;
Gómez-Cadenas, A. J. P. P. B., Involvement of ascorbate peroxidase and
heat shock proteins on citrus tolerance to combined conditions of
drought and high temperatures. 2018, 127 , 194-199.
6. Montero-Barrientos, M.; Hermosa, R.; Nicolás, C.; Cardoza, R. E.;
Gutiérrez, S.; Monte, E. J. F. G.; Biology, Overexpression of a
Trichoderma HSP70 gene increases fungal resistance to heat and other
abiotic stresses. 2008, 45 (11), 1506-1513.
7. Park, C. J.; Seo, Y. S. J. P. P. J., Heat Shock Proteins: A Review of
the Molecular Chaperones for Plant Immunity. 2015, 31(4), 323-333.
8. Physiology, V. J. A. R. o. P.; Biology, P. M., The Roles of Heat
Shock Proteins in Plants. 1991 .
9. Charng, Y. Y.; Liu, H. C.; Liu, N. Y.; Ko, H. S. S. J. P. P.,
Arabidopsis Hsa32, a Novel Heat Shock Protein, Is Essential for Acquired
Thermotolerance during Long Recovery after Acclimation. 2006,140 (4), 1297-1305.
10. Hu, W.; Hu, G.; Han, B. J. P. e., Genome-wide survey and expression
profiling of heat shock proteins and heat shock factors revealed
overlapped and stress specific response under abiotic stresses in rice.2009, 176 (4), 583-590.
11. Li, J.; Zhang, J.; Jia, H.; Li, Y.; Xu, X.; Wang, L.; Lu, M. J. P.
C. R., The Populus trichocarpa PtHSP17.8 involved in heat and salt
stress tolerances. 2016, 35 (8), 1587-1599.
12. Sarkar, N. K.; Kim, Y. K.; Grover, A. J. B. G., Rice sHsp genes:
genomic organization and expression profiling under stress and
development. 2009, 10 .
13. Waters, E. R. J. J. o. E. B., The evolution, function, structure,
and expression of the plant sHSPs. (2), 391.
14. Stengel, F.; Baldwin, A. J.; Painter, A. J.; Jaya, N.; Basha, E.;
Kay, L. E.; Vierling, E.; Robinson, C. V.; Benesch, J. L. P. J. P. N. A.
U. S. A., Quaternary dynamics and plasticity underlie small heat shock
protein chaperone function. 2010, 107 (5), 2007-2012.
15. Bakthisaran, R.; Tangirala, R.; Rao, C. M. J. B. E. B. A., Small
heat shock proteins: Role in cellular functions and pathology.2015, 1854 (4), 291-319.
16. Ré, M. D.; Gonzalez, C.; Escobar, M. R.; Sossi, M. L.; Valle, E. M.;
Boggio, S. B. J. P. P., Small heat shock proteins and the postharvest
chilling tolerance of tomato fruit. 2017, 159 (2),
148-160.
17. Bondino, H. G.; Valle, E. M.; Have, A. T. J. P., Evolution and
functional diversification of the small heat shock protein/α-crystallin
family in higher plants. 2012, 235 (6), 1299-1313.
18. Kotak, S.; Larkindale, J.; Lee, U.; Koskull-D?Ring, P. V.; Vierling,
E.; Scharf, K. D. J. C. O. i. P. B., Complexity of the heat stress
response in plants. 2007, 10 (3), 310-316.
19. Waters, E. R.; Sanders-Reed, A. Z. J. C. S.; Chaperones, Comparative
analysis of the small heat shock proteins in three angiosperm genomes
identifies new subfamilies and reveals diverse evolutionary patterns.2008, 13 (2), 127-142.
20. Siddique, M.; Gernhard, S.; Koskull-Dring, P. V.; Scharf, V. K. D.
J. C. S.; Chaperones, The plant sHSP superfamily: five new members in
Arabidopsis thaliana with unexpected properties. 2008,13 (2), 183-197.
21. Kim, K. H.; Alam, I.; Kim, Y. G.; Sharmin, S. A.; Lee, K. W.; Lee,
S. H.; Lee, B. H. J. B. L., Overexpression of a chloroplast-localized
small heat shock protein OsHSP26 confers enhanced tolerance against
oxidative and heat stresses in tall fescue. 2012, 34(2), 371-377.
22. Sedaghatmehr, M.; Mueller-Roeber, B.; Balazadeh, S. J. N. C., The
plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly
regulate thermomemory in Arabidopsis. 2016, 7 , 12439.
23. Yang, M.; Zhang, Y.; Zhang, H.; Wang, H.; Wei, T.; Che, S.; Zhang,
L.; Hu, B.; Long, H.; Song, W.; Yu, W.; Yan, G., Identification of
MsHsp20 Gene Family in Malus sieversii and Functional Characterization
of MsHsp16.9 in Heat Tolerance. Front Plant Sci 2017,8 , 1761.
24. Kaur, H.; Petla, B. P.; Kamble, N. U.; Singh, A.; Rao, V.; Salvi,
P.; Ghosh, S.; Majee, M., Differentially expressed seed aging responsive
heat shock protein OsHSP18.2 implicates in seed vigor, longevity and
improves germination and seedling establishment under abiotic stress.Front Plant Sci 2015, 6 , 713.
25. Sun, X.; Sun, C.; Li, Z.; Hu, Q.; Han, L.; Luo, H. J. P. C.;
Environment, AsHSP17, a creeping bentgrass small heat shock protein
modulates plant photosynthesis and ABA‐dependent and independent
signalling to attenuate plant response to abiotic stress. 2016,39 (6), 1320-1337.
26. Wehmeyer, N.; Vierling, E. J. P. p., The expression of small heat
shock proteins in seeds responds to discrete developmental signals and
suggests a general protective role in desiccation tolerance.2000, 122 (4), 1099-108.
27. Chen, S. T.; He, N. Y.; Chen, J. H.; Guo, F. Q., Identification of
core subunits of photosystem II as action sites of HSP21, which is
activated by the GUN5-mediated retrograde pathway in Arabidopsis.Plant J 2017, 89 (6), 1106-1118.
28. Zhong, L.; Zhou, W.; Wang, H.; Ding, S.; Lu, Q.; Wen, X.; Peng, L.;
Zhang, L.; Lu, C., Chloroplast small heat shock protein HSP21 interacts
with plastid nucleoid protein pTAC5 and is essential for chloroplast
development in Arabidopsis under heat stress. Plant Cell2013, 25 (8), 2925-43.
29. Sjogren, L.; Floris, M.; Barghetti, A.; Vollmy, F.; Linding, R.;
Brodersen, P., Farnesylated heat shock protein 40 is a component of
membrane-bound RISC in Arabidopsis. J Biol Chem 2018,293 (43), 16608-16622.
30. Ouyang, Y.; Chen, J.; Xie, W.; Wang, L.; Zhang, Q., Comprehensive
sequence and expression profile analysis of Hsp20 gene family in rice.Plant Mol Biol 2009, 70 (3), 341-57.
31. Arce, D.; Spetale, F.; Krsticevic, F.; Cacchiarelli, P.; Las Rivas,
J.; Ponce, S.; Pratta, G.; Tapia, E., Regulatory motifs found in the
small heat shock protein (sHSP) gene family in tomato. BMC
Genomics 2018, 19 (Suppl 8), 860.
32. Zhang, N.; Shi, J.; Zhao, H.; Jiang, J., Activation of small heat
shock protein (SlHSP17.7) gene by cell wall invertase inhibitor (SlCIF1)
gene involved in sugar metabolism in tomato. Gene 2018,679 , 90-99.
33. Sun, A.-Q.; Ge, S.-J.; Dong, W.; Shan, X.-D.; Dong, S.-T.; Zhang,
J.-D., Cloning and Function Analysis of Small Heat Shock Protein
GeneZmHSP17.7from Maize. Acta Agronomica Sinica 2015,41 (3).
34. Lopes-Caitar, V. S.; De Carvalho, M. C.; Darben, L. M.; Kuwahara, M.
K.; Nepomuceno, A. L.; Dias, W. P.; Abdelnoor, R. V.; Marcelino-Guimar
Es, F. C. J. B. G., Genome-wide analysis of the Hsp 20 gene family in
soybean: comprehensive sequence, genomic organization and expression
profile analysis under abiotic and biotic stresses. 2013,14 .
35. Yer, E. N.; Baloglu, M. C.; Ziplar, U. T.; Ayan, S.; Unver, T.,
Drought-Responsive Hsp70 Gene Analysis in Populus at Genome-Wide Level.Plant Molecular Biology Reporter 2015, 34 (2),
483-500.
36. Las, G. B. I.; Korkas, E.; Englezos, V.; Nisiotou, A. A.;
Hatzopoulos, P. J. A. J. o. G.; Research, W., Genome‐wide analysis of
the heat shock protein 90 gene family in grapevine (Vitis vinifera L.).2012, 18 (1), 29-38.
37. Wang, M.; Zou, Z.; Li, Q.; Xin, H.; Zhu, X.; Chen, X.; Li, X.,
Heterologous expression of three Camellia sinensis small heat shock
protein genes confers temperature stress tolerance in yeast and
Arabidopsis thaliana. Plant Cell Rep 2017, 36(7), 1125-1135.
38. Xia, E. H.; Li, F. D.; Tong, W.; Li, P. H.; Wu, Q.; Zhao, H. J.; Ge,
R. H.; Li, R. P.; Li, Y. Y.; Zhang, Z. Z.; Wei, C. L.; Wan, X. C., Tea
Plant Information Archive: a comprehensive genomics and bioinformatics
platform for tea plant. Plant biotechnology journal2019, 17 (10), 1938-1953.
39. Loubser, J.; Hills, P., The Application of a Commercially Available
Citrus-Based Extract Mitigates Moderate NaCl-Stress in Arabidopsis
thaliana Plants. Plants (Basel) 2020, 9 (8).
40. Jiang, X.; Liu, Y.; Li, W.; Zhao, L.; Meng, F.; Wang, Y.; Tan, H.;
Yang, H.; Wei, C.; Wan, X.; Gao, L.; Xia, T., Tissue-specific,
development-dependent phenolic compounds accumulation profile and gene
expression pattern in tea plant [Camellia sinensis]. PLoS One2013, 8 (4), e62315.
41. Wang, W.; Zhou, Y.; Wu, Y.; Dai, X.; Liu, Y.; Qian, Y.; Li, M.;
Jiang, X.; Wang, Y.; Gao, L.; Xia, T., Insight into Catechins Metabolic
Pathways of Camellia sinensis Based on Genome and Transcriptome
Analysis. J Agric Food Chem 2018, 66 (16),
4281-4293.
42. Shen, H.; He, X.; Poovaiah, C. R.; Wuddineh, W. A.; Ma, J.; Mann, D.
G.; Wang, H.; Jackson, L.; Tang, Y.; Stewart, C. N., Jr.; Chen, F.;
Dixon, R. A., Functional characterization of the switchgrass
(Panicum virgatum ) R2R3-MYB transcription factor PvMYB4 for
improvement of lignocellulosic feedstocks. New Phytol2012, 193 (1), 121-36.
43. Sun, X.; Peng, L.; Guo, J.; Chi, W.; Ma, J.; Lu, C.; Zhang, L.,
Formation of DEG5 and DEG8 complexes and their involvement in the
degradation of photodamaged photosystem II reaction center D1 protein in
Arabidopsis. Plant Cell 2007, 19 (4), 1347-61.
44. Walter, M.; Chaban, C.; Schutze, K.; Batistic, O.; Weckermann, K.;
Nake, C.; Blazevic, D.; Grefen, C.; Schumacher, K.; Oecking, C.; Harter,
K.; Kudla, J., Visualization of protein interactions in living plant
cells using bimolecular fluorescence complementation. Plant J2004, 40 (3), 428-38.
45. Clough, S. J.; Bent, A. F., Floral dip: a simplified method for
Agrobacterium -mediated transformation of Arabidopsis thaliana.1998, 16 (6), 735-743.
46. Pfalz, J.; Liere, K.; Kandlbinder, A.; Dietz, K. J.; Oelmuller, R.,
pTAC2, -6, and -12 are components of the transcriptionally active
plastid chromosome that are required for plastid gene expression.Plant Cell 2006, 18 (1), 176-97.
47. Unver, T.; Turktas, M.; Budak, H., In Planta Evidence for the
Involvement of a Ubiquitin Conjugating Enzyme (UBC E2 clade) in Negative
Regulation of Disease Resistance. Plant Molecular Biology
Reporter 2012, 31 (2), 323-334.
48. Lee GJ, Pokala N, Vierling E ., Structural and in vitro molecular
chaperone activity of cytosolic small heat shock proteins from pea.J Biol Chem 1995, 270 (18), 10432-10438.
49. Lee GJ, Roseman AM, Saibil HR, Vierling E ., A small heat shock
protein stably binds heatdenaturedmodel substrates and can maintain a
substrate in a folding-competent state. EMBO J 1997,16 (3), 659-671.
50. Waters E, Lee G, Vierling E Evolution, structure and function of the
small heat shock proteins in plants. J Exp Bot1996, 47,325–338J 16,659–671.
51. Wang W, Vinocur B, Shoseyov O, Altman A Role of plant heat-shock
proteins and molecular chaperones in the abiotic stress response.Trends Plant Sci 2004, 9 (5),244–252.
52. Wang L, Zhao CM, Wang YJ, Liu J (2005) Overexpression of
chloroplast-localized small molecular
heat-shock protein enhances chilling tolerance in tomato plant. J
Plant Physiol Mol Biol 2005, 31 (2),167–174.
53. Guo, Y.; Zhao, S.; Zhu, C.; Chang, X.; Yue, C.; Wang, Z.; Lin, Y.;
Lai, Z., Identification of drought-responsive miRNAs and physiological
characterization of tea plant (Camellia sinensis L.) under drought
stress. BMC Plant Biol 2017, 17 (1), 211.
54. Jin, X.; Cao, D.; Wang, Z.; Ma, L.; Tian, K.; Liu, Y.; Gong, Z.;
Zhu, X.; Jiang, C.; Li, Y., Genome-wide identification and expression
analyses of the LEA protein gene family in tea plant reveal their
involvement in seed development and abiotic stress responses. Sci
Rep 2019, 9 (1), 14123.
55. Li, J.; Yang, Y.; Sun, K.; Chen, Y.; Chen, X.; Li, X., Exogenous
Melatonin Enhances Cold, Salt and Drought Stress Tolerance by Improving
Antioxidant Defense in Tea Plant (Camellia sinensis (L.) O. Kuntze).Molecules 2019, 24 (9).
56. Chen, J.; Gao, T.; Wan, S.; Zhang, Y.; Yang, J.; Yu, Y.; Wang, W.,
Genome-Wide Identification, Classification and Expression Analysis of
the HSP Gene Superfamily in Tea Plant (Camellia sinensis). Int J
Mol Sci 2018, 19 (9).
57. Chen, Q.; Chen, Q. J.; Sun, G. Q.; Zheng, K.; Yao, Z. P.; Han, Y.
H.; Wang, L. P.; Duan, Y. J.; Yu, D. Q.; Qu, Y. Y., Genome-Wide
Identification of Cyclophilin Gene Family in Cotton and Expression
Analysis of the Fibre Development in Gossypium barbadense. Int J
Mol Sci 2019, 20 (2).
58. Hou, D.; Bai, Q.; Li, J.; Xie, L.; Li, X.; Cheng, Z.; Gao, J., The
Gibberellic Acid-Stimulated Transcript Gene Family in Moso Bamboo: A
Genome-Wide Survey and Expression Profiling During Development and
Abiotic Stresses. Journal of Plant Growth Regulation2018, 37 (4), 1135-1147.
59. Feng, X. H.; Zhang, H. X.; Ali, M.; Gai, W. X.; Cheng, G. X.; Yu, Q.
H.; Yang, S. B.; Li, X. X.; Gong, Z. H., A small heat shock protein
CaHsp25.9 positively regulates heat, salt, and drought stress tolerance
in pepper (Capsicum annuum L.). Plant Physiol Biochem2019, 142 , 151-162.
60. Sun, X.; Zhu, J.; Li, X.; Li, Z.; Han, L.; Luo, H., AsHSP26.8a, a
creeping bentgrass small heat shock protein integrates different
signaling pathways to modulate plant abiotic stress response. BMC
Plant Biol 2020, 20 (1), 184.
61. Bernfur, K.; Rutsdottir, G.; Emanuelsson, C., The
chloroplast-localized small heat shock protein Hsp21 associates with the
thylakoid membranes in heat-stressed plants. Protein Sci2017, 26 (9), 1773-1784.
62. Sedaghatmehr, M.; Mueller-Roeber, B.; Balazadeh, S., The plastid
metalloprotease FtsH6 and small heat shock protein HSP21 jointly
regulate thermomemory in Arabidopsis. Nat Commun 2016,7 , 12439.
63. Chauhan, H.; Khurana, N.; Nijhavan, A.; Khurana, J. P.; Khurana, P.,
The wheat chloroplastic small heat shock protein (sHSP26) is involved in
seed maturation and germination and imparts tolerance to heat stress.Plant Cell Environ 2012, 35 (11), 1912-31.
64. Gustavsson, N.; Härndahl, U.; Sundby, C.; Emanuelsson, A.;
Roepstorff, P. J. P. S., Methionine sulfoxidation of the chloroplast
small heat shock protein and conformational changes in the oligomer.2010, 8 (11), 2506-2512.