References
Aerts, R. (1996). Nutrient resorption from senescing leaves of
perennials: are there general patterns?. J. Ecol., 84 ,
597-608.
Barbe, L., Jung, V., Prinzing, A., Bittebiere, A.K., Butenschoen, O., &
Mony, C. (2017). Functionally dissimilar neighbors accelerate litter
decomposition in two grass species. New Phytol. , 214 ,
1092-1102.
Bergmann, J., Weigelt, A., Plas, F., Laughlin, D.C., Kuyper, T.M., &
Guerrero-Ramirez N., et al. (2020). The fungal collaboration
gradient dominates the root economics space in plants. Sci. Adv. ,6 , eaba3756.
Brundrett, M.C., & Tedersoo, L. (2018). Evolutionary history of
mycorrhizal symbioses and global host plant diversity. New
Phytol. , 220 , 1108-1115.
Chapman, S. K., Langley, J. A., Hart, S.C., & Koch, G.W. (2006). Plants
actively control nitrogen cycling: uncorking the microbial bottleneck.New Phytol. , 169 , 27-34.
Chen, W., Koide, R.T., Adams, T.S., Deforest, J.L., Cheng, L., &
Eissenstat, D.M. (2016). Root morphology and mycorrhizal symbioses
together shape nutrient foraging strategies of temperate trees.Proc. Natl. Acad. Sci. , 113 , 8741-8746.
Cornwell, W.K., Cornelissen, J., Amatangelo, K., Dorrepaal, E., Eviner,
V.T., & Godoy, O., et al. (2008). Plant species traits are the
predominant control on litter decomposition rates within biomes
worldwide. Ecol. Lett. , 11 , 1065-1071.
Deng, M.F., Liu, L.L., Jiang, L., Liu, W.X., Wang, X., & Li, S.P.,et al. (2018). Ecosystem scale trade-off in nitrogen acquisition
pathways. Nat. Ecol. Evol. , 2 , 1724-1734.
Fortunel, C., Fine, P.V.A., & Baraloto, C. (2012). Leaf, stem and root
tissue strategies across 758 Neotropical tree species. Funct.
Ecol. , 26 , 1153-1161.
Freschet, G.T., Cornelissen, J.H.C., & Aerts, L.R. (2010). Substantial
nutrient resorption from leaves, stems and roots in a subarctic flora:
what is the link with other resource economics traits? New
Phytol. 186 , 879-889.
Freschet, G.T., Aerts, R., & Cornelissen, J.H.C. (2012). A plant
economics spectrum of litter decomposability. Funct. Ecol. ,26 , 56-65.
Guo, D.L., Xia, M.X., Wei, X., Chang, W.J., Liu, Y., & Wang, Z.Q.
(2008). Anatomical traits associated with absorption and mycorrhizal
colonization are linked to root branch order in twenty-three Chinese
temperate tree species. New Phytol. , 180 , 673-683.
Hodge, A. (2004). The plastic plant: root responses to heterogeneous
supplies of nutrients. New Phytol. , 162 , 9-24.
Huang, J.J., Wang, X.H., & Yan, E.R. (2007). Leaf nutrient
concentration, nutrient resorption and litter decomposition in an
evergreen broad-leaved forest in eastern china. Forest Ecol.
Manage. , 239 , 150-158.
Jiang, L., Kou, L., & Li, S.G. (2018). Alterations of early-stage
decomposition of leaves and absorptive roots by deposition of nitrogen
and phosphorus have contrasting mechanisms. Soil Biol. Biochem. ,127 , 213-222.
Jiang, L., Kou, L., & Li, S.G. (2019). Decomposition of leaf mixtures
and absorptive-root mixtures synchronously changes with deposition of
nitrogen and phosphorus. Soil Biol. Biochem. , 138 , 1-11.
Jiang, L., Wang, H.M., Li, S.G., Fu, X.L., Dai, X.Q., & Yan, H.,et al. (2021). Mycorrhizal and environmental controls over root
trait–decomposition linkage of woody trees. New Phytol. ,229 , 284-295.
Keller, A.B., & Phillips, R.P. (2019). Leaf litter decay rates differ
between mycorrhizal groups in temperate, but not tropical, forests.New Phytol. , 222 , 556-564.
Killingbeck, K.T. (1996). Nutrients in senesced leaves: keys to the
search for potential resorption and resorption proficiency.Ecology , 77 , 1716-1727.
Kobe, R.K., Lepczyk, C.A., & Iyer, M. (2005). Resorption efficiency
decreases with increasing green leaf nutrients in a global data set.Ecology , 86 , 2780-2792.
Kong, D.L., Ma, C.E., Zhang, Q., Li, L., Chen, X.Y., & Zeng, H.,et al. (2014). Leading dimensions in absorptive root trait
variation across 96 subtropical forest species. New Phytol. ,203 , 863–872.
Kou, L., Wang, H.M., Gao, W.L., Chen, W.W., Yang, H., & Li, S.G.
(2017). Nitrogen addition regulates tradeoff between root capture and
foliar resorption of nitrogen and phosphorus in a subtropical pine
plantation. Trees , 31 , 1-15.
Kou, L., Chen, W.W., Jiang, L., Dai, X.Q., Fu, X.L., & Wang, H.M.,et al. (2018a). Simulated nitrogen deposition affects
stoichiometry of multiple elements in resource-acquiring plant organs in
a seasonally dry subtropical forest. Sci. Total Environ. ,624 , 611-620.
Kou, L., Jiang, L., Fu, X.L., Dai, X.Q., Wang, H.M., & Li, S.G.
(2018b). Nitrogen deposition increases root production and turnover but
slows root decomposition in Pinus elliottii plantations.New phytol. , 218 , 1450-1461.
Kramer-Walter, K.R., & Laughlin, D.C. (2017). Root nutrient
concentration and biomass allocation are more plastic than morphological
traits in response to nutrient limitation. Plant Soil ,416 , 539-550.
Li, L., McCormack, M.L., Chen, F.S., Wang, H.M., Ma, Z.Q., & Guo, D.L.
(2019). Different responses of absorptive roots and arbuscular
mycorrhizal fungi to fertilization provide diverse nutrient acquisition
strategies in Chinese fir. For. Ecol. Manag. , 433 ,
64-72.
Liese, R., Alings, K., & Meier, I.C. (2017). Root branching is a
leading root trait of the plant economics spectrum in temperate trees.Front. Plant Sci. 8 , 1-12.
Lin, G.G., McCormack, M.L., Ma, C.E., & Guo, D.L. (2017). Similar
below-ground carbon cycling dynamics but contrasting modes of nitrogen
cycling between arbuscular mycorrhizal and ectomycorrhizal forests.New Phytol. , 213 , 1440-1451.
McCormack, M.L., Dickie, I.A., Eissenstat, D.M., Fahey, T.J., Fernandez,
C.W., & Guo, D.L., et al. (2015). Redefining fine roots improves
understanding of below-ground contributions to terrestrial biosphere
processes. New Phytol. , 207 , 505-518.
Norby, R.J., & Jackson, R.B. (2010). Root dynamics and global change:
seeking an ecosystem perspective. New Phytol. , 147 ,
3-12.
Norby, R.J., Long, T.M., Hartz-Rubin, J.S., O’Neill, E.G. (2000).
Nitrogen resorption in senescing tree leaves in a warmer,
CO2-enriched atmosephere. Plant soil ,224 , 15-29.
Phillips, R.P., Brzostek, E., & Midgley, M.G. (2013). The
mycorrhizal-associated nutrient economy: a new framework for predicting
carbon-nutrient couplings in temperate forests. New Phytol. ,199 , 41-51.
Read, D.J., & Perez-Moreno, J. (2003). Mycorrhizas and nutrient cycling
in ecosystems-a journey towards relevance?. New Phytol. ,157 , 475-492.
Reich, P.B. (2014). The world-wide ’fast-slow’ plant economics spectrum:
a traits manifesto. J. Ecol. , 102 , 275-301.
Reich, P.B., Walters, M.B., & Ellsworth, D.S. (1997). From tropics to
tundra: global convergence in plant functioning. Proc. Natl. Acad.
Sci. , 94 , 13730-13734.
Riva, E., Prieto, I., & Villar, R. (2019). The leaf economic spectrum
drives leaf litter decomposition in Mediterranean forests. Plant
Soil , 435 , 353-366.
Smith, F.A., & Smith, S.E. (2011). What is the significance of the
arbuscular mycorrhizal colonisation of many economically important crop
plants?. Plant Soil , 348 , 63-79.
Takebayashi, Y., Koba, K., Sasaki, Y., Fang, Y.T., & Yoh, M. (2010).
The natural abundance of 15N in plant and
soil-available N indicates a shift of main plant N resources to
NO3– from
NH4+ along the N leaching gradient.Rapid Commun. Mass Spectrom. , 24 , 1001-1008.
Talbot, J.M., Allison, S.D., & Treseder, K.K. (2008). Decomposers in
disguise: mycorrhizal fungi as regulators of soil C dynamics in
ecosystems under global change. Funct. Ecol. , 22 ,
955-963.
van Soest, P.J., Wine, R.H. (1968). Determination of lignin and
cellulose in acid-detergent fiber with permanganate. J. Assoc.
Off. Anal. Chem. , 51 , 780-785.
Vance, C.P., Uhde-Stone, C., & Allan, D.L. (2003). Phosphorus
acquisition and use: critical adaptations by plants for securing a
nonrenewable resource. New Phytol. , 157 , 423-447.
Veen, G.F.C., Snoek, B.L., Bakx-Schotman, T., Wardle, D.A., & van der
Putten, W.H. (2019). Relationships between fungal community composition
in decomposing leaf litter and home-field advantage effects.Funct. Ecol. , 33 , 1524-1535.
Vergutz, L., Manzoni, S., Porporato, A., Novais, R.F., & Jackson, R.B.
(2012). Global resorption efficiencies and concentrations of carbon and
nutrients in leaves of terrestrial plants. Ecol. Monogr. ,82 , 205-220.
Wang, L., & Macko, S.A. (2011). Constrained preferences in nitrogen
uptake across plant species and environments. Plant Cell
Environ. , 34 , 525-534.
Wang, Y.D., Wang, Z.L., Wang, H.M., Guo, C.C., & Bao, W.K. (2012).
Rainfall pulse primarily drives litterfall respiration and its
contribution to soil respiration in a young exotic pine plantation in
subtropical China. Can. J. For. Res. , 42 , 657-666.
Wen, X.F., Wang, H.M., Wang, J.L., Yu, G.R., & Sun, X.M. (2010).
Ecosystem carbon exchanges of a subtropical evergreen coniferous
plantation subjected to seasonal drought, 2003-2007.Biogeosciences , 7 , 357-369.
Wright, I.J. & Westoby, I. (2003). Nutrient concentration, resorption
and lifespan: leaf traits of Australian sclerophyll species.Funct. Ecol. , 17 , 10-19.
Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z. &
Cavender-Bares, J., et al. (2004). The worldwide leaf economics
spectrum. Nature , 428 , 821-827.
Xia, M.X., Guo, D.L., & Pregitzer, K.S. (2010). Ephemeral root modules
in Fraxinus mandshurica . New Phytol. , 188 ,
1065-1074.
Xu, J.W., Lin, G.G., Liu, B., & Mao, R. (2020). Linking leaf nutrient
resorption and litter decomposition to plant mycorrhizal associations in
boreal peatlands. Plant Soil , 448 , 413-424.
Zhang, H.Y., Lu, X.T., Hartmann, H., Keller, A., Han, X.G. & Trumbore,
S. et al. (2018). Foliar nutrient resorption differs between
arbuscular mycorrhizal and ectomycorrhizal trees at local and global
scales. Glob. Ecol. Biogeogr. , 27 , 875-885.
Zhao, Q.Z., Guo, J., Shu, M., Wang, P., & Hu, S.J. (2020). Impacts of
drought and nitrogen enrichment on leaf nutrient resorption and root
nutrient allocation in four Tibetan plant species. Sci. Total
Environ. , 723 , 138106.
Zhou, X.L., Wang, A., Hobbie, E.A., Zhu, F.F., Qu, Y.Y., & Dai, L.M.,et al. (2020). Mature conifers assimilate nitrate as efficiently
as ammonium from soils in four forest plantations. New Phytol. ,229 , 3184-3194.
Zhu, J.X., Wang, Q.F., He, N.P., Smith, M.D., Elser, J.J., & Du, J.Q.,et al. (2016). Imbalanced atmospheric nitrogen and phosphorus
depositions in China: implications for nutrient limitation. J.
Geophy. , 121 , 1605-1616.