Reference
Anthony B, Allen JT, Li YS, & McManus DP (2010). Hepatic stellate cells
and parasite-induced liver fibrosis. Parasit Vectors 3: 60.
Aydin MM, & Akcali KC (2018). Liver fibrosis. Turk J Gastroenterol
29: 14-21.
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger
B, et al. (2005). Oncogene-induced senescence as an initial
barrier in lymphoma development. Nature 436: 660-665.
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, & Alimonti A
(2019). Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev
99: 1047-1078.
Campisi J, & d’Adda di Fagagna F (2007). Cellular senescence: when bad
things happen to good cells. Nat Rev Mol Cell Biol 8: 729-740.
Chang Y, Jia X, Wei F, Wang C, Sun X, Xu S, et al. (2016). CP-25,
a novel compound, protects against autoimmune arthritis by modulating
immune mediators of inflammation and bone damage. Sci Rep 6:26239.
Chen J, Pan J, Wang J, Song K, Zhu D, Huang C, et al. (2016).
Soluble egg antigens of Schistosoma japonicum induce senescence in
activated hepatic stellate cells by activation of the STAT3/p53/p21
pathway. Sci Rep 6: 30957.
Chen J, Wang Y, Wu H, Yan S, Chang Y, & Wei W (2018). A Modified
Compound From Paeoniflorin, CP-25, Suppressed Immune Responses and
Synovium Inflammation in Collagen-Induced Arthritis Mice. Front
Pharmacol 9: 563.
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al.(2005). Crucial role of p53-dependent cellular senescence in suppression
of Pten-deficient tumorigenesis. Nature 436: 725-730.
Collado M, & Serrano M (2010). Senescence in tumours: evidence from
mice and humans. Nat Rev Cancer 10: 51-57.
Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, et
al. (2013). Transforming growth factor-beta-induced cross talk between
p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes
62: 3151-3162.
Duan Y, Gu X, Zhu D, Sun W, Chen J, Feng J, et al. (2014).
Schistosoma japonicum soluble egg antigens induce apoptosis and inhibit
activation of hepatic stellate cells: a possible molecular mechanism.
Int J Parasitol 44: 217-224.
Duval F, Moreno-Cuevas JE, Gonzalez-Garza MT, Rodriguez-Montalvo C, &
Cruz-Vega DE (2014). Liver fibrosis and protection mechanisms action of
medicinal plants targeting apoptosis of hepatocytes and hepatic stellate
cells. Adv Pharmacol Sci 2014: 373295.
Friedman SL (2008). Mechanisms of hepatic fibrogenesis. Gastroenterology
134: 1655-1669.
Gu F, Xu S, Zhang P, Chen X, Wu Y, Wang C, et al. (2018). CP-25
Alleviates Experimental Sjogren’s Syndrome Features in NOD/Ltj Mice and
Modulates T Lymphocyte Subsets. Basic Clin Pharmacol Toxicol.
Guo Q, Chen M, Chen Q, Xiao G, Chen Z, Wang X, et al. (2021).
Silencing p53 inhibits interleukin 10-induced activated hepatic stellate
cell senescence and fibrotic degradation in vivo. Exp Biol Med (Maywood)
246: 447-458.
Gur C, Doron S, Kfir-Erenfeld S, Horwitz E, Abu-Tair L, Safadi R,
et al. (2012). NKp46-mediated killing of human and mouse hepatic
stellate cells attenuates liver fibrosis. Gut 61: 885-893.
Hayflick L (1965). The Limited in Vitro Lifetime of Human Diploid Cell
Strains. Exp Cell Res 37: 614-636.
Huang YH, Chen MH, Guo QL, Chen ZX, Chen QD, & Wang XZ (2020).
Interleukin-10 induces senescence of activated hepatic stellate cells
via STAT3-p53 pathway to attenuate liver fibrosis. Cell Signal
66: 109445.
Huntzinger E, & Izaurralde E (2011). Gene silencing by microRNAs:
contributions of translational repression and mRNA decay. Nat Rev Genet
12: 99-110.
Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, et al. (2016).
MicroRNA-378 limits activation of hepatic stellate cells and liver
fibrosis by suppressing Gli3 expression. Nat Commun 7: 10993.
Jia X, Wei F, Sun X, Chang Y, Xu S, Yang X, et al. (2016). CP-25
attenuates the inflammatory response of fibroblast-like synoviocytes
co-cultured with BAFF-activated CD4(+) T cells. J Ethnopharmacol
189: 194-201.
Jin H, Lian N, Zhang F, Chen L, Chen Q, Lu C, et al. (2016).
Activation of PPARgamma/P53 signaling is required for curcumin to induce
hepatic stellate cell senescence. Cell Death Dis 7: e2189.
Kim KM, Han CY, Kim JY, Cho SS, Kim YS, Koo JH, et al. (2018).
Galpha12 overexpression induced by miR-16 dysregulation contributes to
liver fibrosis by promoting autophagy in hepatic stellate cells. J
Hepatol 68: 493-504.
Kretov DA, Walawalkar IA, Mora-Martin A, Shafik AM, Moxon S, &
Cifuentes D (2020). Ago2-Dependent Processing Allows miR-451 to Evade
the Global MicroRNA Turnover Elicited during Erythropoiesis. Mol Cell
78: 317-328 e316.
Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C,
et al. (2008). Senescence of activated stellate cells limits liver
fibrosis. Cell 134: 657-667.
Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, et
al. (2016). ZEB1 drives epithelial-to-mesenchymal transition in lung
cancer. J Clin Invest 126: 3219-3235.
Li G, Yang F, Xu H, Yue Z, Fang X, & Liu J (2015). MicroRNA-708 is
downregulated in hepatocellular carcinoma and suppresses tumor invasion
and migration. Biomed Pharmacother 73: 154-159.
Li Q, Li S, Wu Y, & Gao F (2017). miRNA-708 functions as a tumour
suppressor in hepatocellular carcinoma by targeting SMAD3. Oncol Lett
14: 2552-2558.
Ma X, Wang J, He X, Zhao Y, Wang J, Zhang P, et al. (2014). Large
dosage of chishao in formulae for cholestatic hepatitis: a systematic
review and meta-analysis. Evid Based Complement Alternat Med
2014: 328152.
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, & Tuschl T
(2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and
siRNAs. Mol Cell 15: 185-197.
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der
Horst CM, et al. (2005). BRAFE600-associated senescence-like cell
cycle arrest of human naevi. Nature 436: 720-724.
Munoz-Espin D, & Serrano M (2014). Cellular senescence: from physiology
to pathology. Nat Rev Mol Cell Biol 15: 482-496.
Okinaga T, Ariyoshi W, Akifusa S, & Nishihara T (2013). Essential role
of JAK/STAT pathway in the induction of cell cycle arrest in macrophages
infected with periodontopathic bacterium Aggregatibacter
actinomycetemcomitans. Med Microbiol Immunol 202: 167-174.
Peng Y, & Croce CM (2016). The role of MicroRNAs in human cancer.
Signal Transduct Target Ther 1: 15004.
Poljak B, Vidovic-Filipovic S, Banovic I, Gabric Z, Juric A, & Tadin I
(1989). [The breech partogram]. Jugosl Ginekol Perinatol
29: 103-106.
Qian W, Cai X, Qian Q, Peng W, Yu J, Zhang X, et al. (2019).
lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated
epithelial-mesenchymal transition by competitively binding miR-141-3p.
Cell Death Dis 10: 129.
Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, et al.(2005). Purified Argonaute2 and an siRNA form recombinant human RISC.
Nat Struct Mol Biol 12: 340-349.
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt
S, et al. (2011). Micro-RNA profiling reveals a role for miR-29
in human and murine liver fibrosis. Hepatology 53: 209-218.
Roy B, Beamon J, Balint E, & Reisman D (1994). Transactivation of the
human p53 tumor suppressor gene by c-Myc/Max contributes to elevated
mutant p53 expression in some tumors. Mol Cell Biol 14:7805-7815.
Rufini A, Tucci P, Celardo I, & Melino G (2013). Senescence and aging:
the critical roles of p53. Oncogene 32: 5129-5143.
Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, & Brenner D (2003).
Replicative senescence of activated human hepatic stellate cells is
accompanied by a pronounced inflammatory but less fibrogenic phenotype.
Hepatology 37: 653-664.
Schrader J, Fallowfield J, & Iredale JP (2009). Senescence of activated
stellate cells: not just early retirement. Hepatology 49:1045-1047.
Shen J, Xia W, Khotskaya YB, Huo L, Nakanishi K, Lim SO, et al.(2013). EGFR modulates microRNA maturation in response to hypoxia
through phosphorylation of AGO2. Nature 497: 383-387.
Shu JL, Zhang XZ, Han L, Zhang F, Wu YJ, Tang XY, et al. (2019).
Paeoniflorin-6’-O-benzene sulfonate alleviates collagen-induced
arthritis in mice by downregulating BAFF-TRAF2-NF-kappaB signaling:
comparison with biological agents. Acta Pharmacol Sin 40:801-813.
Song Y, Liu C, Liu X, Trottier J, Beaudoin M, Zhang L, et al.(2017). H19 promotes cholestatic liver fibrosis by preventing
ZEB1-mediated inhibition of epithelial cell adhesion molecule.
Hepatology 66: 1183-1196.
Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al.(2012). Deactivation of hepatic stellate cells during liver fibrosis
resolution in mice. Gastroenterology 143: 1073-1083 e1022.
Tu J, Guo Y, Hong W, Fang Y, Han D, Zhang P, et al. (2019). The
Regulatory Effects of Paeoniflorin and Its Derivative
Paeoniflorin-6’-O-Benzene Sulfonate CP-25 on Inflammation and Immune
Diseases. Front Pharmacol 10: 57.
Wang DD, Jiang MY, Wang W, Zhou WJ, Zhang YW, Yang M, et al.(2020). Paeoniflorin-6’-O-benzene sulfonate down-regulates
CXCR4-Gbetagamma-PI3K/AKT mediated migration in fibroblast-like
synoviocytes of rheumatoid arthritis by inhibiting GRK2 translocation.
Biochem Biophys Res Commun 526: 805-812.
Wang J, Pan J, Li H, Long J, Fang F, Chen J, et al. (2018).
lncRNA ZEB1-AS1 Was Suppressed by p53 for Renal Fibrosis in Diabetic
Nephropathy. Mol Ther Nucleic Acids 12: 741-750.
Wang QT, Zhang LL, Wu HX, & Wei W (2011). The expression change of
beta-arrestins in fibroblast-like synoviocytes from rats with
collagen-induced arthritis and the effect of total glucosides of paeony.
J Ethnopharmacol 133: 511-516.
Xiao H, Wei H, Yang GB, Peng HL, & Zhang C (2011). [Effects of
paeoniflorin on expressions of CTGF, PDGF and TNF-alpha in mice with
hepatic fibrosis due to Schistosoma japonicum infection]. Zhongguo Xue
Xi Chong Bing Fang Zhi Za Zhi 23: 288-291.
Yang J, Liu Q, Cao S, Xu T, Li X, Zhou D, et al. (2017).
MicroRNA-145 Increases the Apoptosis of Activated Hepatic Stellate Cells
Induced by TRAIL through NF-kappaB Signaling Pathway. Front Pharmacol
8: 980.
Yang J, Lu Y, Yang P, Chen Q, Wang Y, Ding Q, et al. (2019a).
MicroRNA-145 induces the senescence of activated hepatic stellate cells
through the activation of p53 pathway by ZEB2. J Cell Physiol
234: 7587-7599.
Yang J, Tao Q, Zhou Y, Chen Q, Li L, Hu S, et al. (2020).
MicroRNA-708 represses hepatic stellate cells activation and
proliferation by targeting ZEB1 through Wnt/beta-catenin pathway. Eur J
Pharmacol 871: 172927.
Yang X, Zhao Y, Jia X, Wang C, Wu Y, Zhang L, et al. (2019b).
CP-25 combined with MTX/ LEF ameliorates the progression of
adjuvant-induced arthritis by the inhibition on GRK2 translocation.
Biomed Pharmacother 110: 834-843.
Yang XD, Wang C, Zhou P, Yu J, Asenso J, Ma Y, et al. (2016).
Absorption characteristic of paeoniflorin-6’-O-benzene sulfonate (CP-25)
in in situ single-pass intestinal perfusion in rats. Xenobiotica
46: 775-783.
Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, et al. (2015).
Identification and characterization of progesterone- and
estrogen-regulated MicroRNAs in mouse endometrial epithelial cells.
Reprod Sci 22: 223-234.
Zhang H, Wang Y, Dou J, Guo Y, He J, Li L, et al. (2019).
Acetylation of AGO2 promotes cancer progression by increasing oncogenic
miR-19b biogenesis. Oncogene 38: 1410-1431.
Zhang X, Han X, Yin L, Xu L, Qi Y, Xu Y, et al. (2015). Potent
effects of dioscin against liver fibrosis. Sci Rep 5: 9713.
Zhao F, Xu G, Zhou Y, Wang L, Xie J, Ren S, et al. (2014).
MicroRNA-26b inhibits hepatitis B virus transcription and replication by
targeting the host factor CHORDC1 protein. J Biol Chem 289:35029-35041.
Zhao Y, Zhou G, Wang J, Jia L, Zhang P, Li R, et al. (2013).
Paeoniflorin protects against ANIT-induced cholestasis by ameliorating
oxidative stress in rats. Food Chem Toxicol 58: 242-248.
Zhu L, Wei W, Zheng YQ, & Jia XY (2005). Effects and mechanisms of
total glucosides of paeony on joint damage in rat collagen-induced
arthritis. Inflamm Res 54: 211-220.