Reference
Anthony B, Allen JT, Li YS, & McManus DP (2010). Hepatic stellate cells and parasite-induced liver fibrosis. Parasit Vectors 3: 60.
Aydin MM, & Akcali KC (2018). Liver fibrosis. Turk J Gastroenterol 29: 14-21.
Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B, et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660-665.
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, & Alimonti A (2019). Cellular Senescence: Aging, Cancer, and Injury. Physiol Rev 99: 1047-1078.
Campisi J, & d’Adda di Fagagna F (2007). Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729-740.
Chang Y, Jia X, Wei F, Wang C, Sun X, Xu S, et al. (2016). CP-25, a novel compound, protects against autoimmune arthritis by modulating immune mediators of inflammation and bone damage. Sci Rep 6:26239.
Chen J, Pan J, Wang J, Song K, Zhu D, Huang C, et al. (2016). Soluble egg antigens of Schistosoma japonicum induce senescence in activated hepatic stellate cells by activation of the STAT3/p53/p21 pathway. Sci Rep 6: 30957.
Chen J, Wang Y, Wu H, Yan S, Chang Y, & Wei W (2018). A Modified Compound From Paeoniflorin, CP-25, Suppressed Immune Responses and Synovium Inflammation in Collagen-Induced Arthritis Mice. Front Pharmacol 9: 563.
Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M, et al.(2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725-730.
Collado M, & Serrano M (2010). Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10: 51-57.
Deshpande SD, Putta S, Wang M, Lai JY, Bitzer M, Nelson RG, et al. (2013). Transforming growth factor-beta-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62: 3151-3162.
Duan Y, Gu X, Zhu D, Sun W, Chen J, Feng J, et al. (2014). Schistosoma japonicum soluble egg antigens induce apoptosis and inhibit activation of hepatic stellate cells: a possible molecular mechanism. Int J Parasitol 44: 217-224.
Duval F, Moreno-Cuevas JE, Gonzalez-Garza MT, Rodriguez-Montalvo C, & Cruz-Vega DE (2014). Liver fibrosis and protection mechanisms action of medicinal plants targeting apoptosis of hepatocytes and hepatic stellate cells. Adv Pharmacol Sci 2014: 373295.
Friedman SL (2008). Mechanisms of hepatic fibrogenesis. Gastroenterology 134: 1655-1669.
Gu F, Xu S, Zhang P, Chen X, Wu Y, Wang C, et al. (2018). CP-25 Alleviates Experimental Sjogren’s Syndrome Features in NOD/Ltj Mice and Modulates T Lymphocyte Subsets. Basic Clin Pharmacol Toxicol.
Guo Q, Chen M, Chen Q, Xiao G, Chen Z, Wang X, et al. (2021). Silencing p53 inhibits interleukin 10-induced activated hepatic stellate cell senescence and fibrotic degradation in vivo. Exp Biol Med (Maywood) 246: 447-458.
Gur C, Doron S, Kfir-Erenfeld S, Horwitz E, Abu-Tair L, Safadi R, et al. (2012). NKp46-mediated killing of human and mouse hepatic stellate cells attenuates liver fibrosis. Gut 61: 885-893.
Hayflick L (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37: 614-636.
Huang YH, Chen MH, Guo QL, Chen ZX, Chen QD, & Wang XZ (2020). Interleukin-10 induces senescence of activated hepatic stellate cells via STAT3-p53 pathway to attenuate liver fibrosis. Cell Signal 66: 109445.
Huntzinger E, & Izaurralde E (2011). Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12: 99-110.
Hyun J, Wang S, Kim J, Rao KM, Park SY, Chung I, et al. (2016). MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat Commun 7: 10993.
Jia X, Wei F, Sun X, Chang Y, Xu S, Yang X, et al. (2016). CP-25 attenuates the inflammatory response of fibroblast-like synoviocytes co-cultured with BAFF-activated CD4(+) T cells. J Ethnopharmacol 189: 194-201.
Jin H, Lian N, Zhang F, Chen L, Chen Q, Lu C, et al. (2016). Activation of PPARgamma/P53 signaling is required for curcumin to induce hepatic stellate cell senescence. Cell Death Dis 7: e2189.
Kim KM, Han CY, Kim JY, Cho SS, Kim YS, Koo JH, et al. (2018). Galpha12 overexpression induced by miR-16 dysregulation contributes to liver fibrosis by promoting autophagy in hepatic stellate cells. J Hepatol 68: 493-504.
Kretov DA, Walawalkar IA, Mora-Martin A, Shafik AM, Moxon S, & Cifuentes D (2020). Ago2-Dependent Processing Allows miR-451 to Evade the Global MicroRNA Turnover Elicited during Erythropoiesis. Mol Cell 78: 317-328 e316.
Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, et al. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134: 657-667.
Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, et al. (2016). ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Invest 126: 3219-3235.
Li G, Yang F, Xu H, Yue Z, Fang X, & Liu J (2015). MicroRNA-708 is downregulated in hepatocellular carcinoma and suppresses tumor invasion and migration. Biomed Pharmacother 73: 154-159.
Li Q, Li S, Wu Y, & Gao F (2017). miRNA-708 functions as a tumour suppressor in hepatocellular carcinoma by targeting SMAD3. Oncol Lett 14: 2552-2558.
Ma X, Wang J, He X, Zhao Y, Wang J, Zhang P, et al. (2014). Large dosage of chishao in formulae for cholestatic hepatitis: a systematic review and meta-analysis. Evid Based Complement Alternat Med 2014: 328152.
Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, & Tuschl T (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15: 185-197.
Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720-724.
Munoz-Espin D, & Serrano M (2014). Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15: 482-496.
Okinaga T, Ariyoshi W, Akifusa S, & Nishihara T (2013). Essential role of JAK/STAT pathway in the induction of cell cycle arrest in macrophages infected with periodontopathic bacterium Aggregatibacter actinomycetemcomitans. Med Microbiol Immunol 202: 167-174.
Peng Y, & Croce CM (2016). The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1: 15004.
Poljak B, Vidovic-Filipovic S, Banovic I, Gabric Z, Juric A, & Tadin I (1989). [The breech partogram]. Jugosl Ginekol Perinatol 29: 103-106.
Qian W, Cai X, Qian Q, Peng W, Yu J, Zhang X, et al. (2019). lncRNA ZEB1-AS1 promotes pulmonary fibrosis through ZEB1-mediated epithelial-mesenchymal transition by competitively binding miR-141-3p. Cell Death Dis 10: 129.
Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, et al.(2005). Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12: 340-349.
Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, et al. (2011). Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology 53: 209-218.
Roy B, Beamon J, Balint E, & Reisman D (1994). Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 14:7805-7815.
Rufini A, Tucci P, Celardo I, & Melino G (2013). Senescence and aging: the critical roles of p53. Oncogene 32: 5129-5143.
Schnabl B, Purbeck CA, Choi YH, Hagedorn CH, & Brenner D (2003). Replicative senescence of activated human hepatic stellate cells is accompanied by a pronounced inflammatory but less fibrogenic phenotype. Hepatology 37: 653-664.
Schrader J, Fallowfield J, & Iredale JP (2009). Senescence of activated stellate cells: not just early retirement. Hepatology 49:1045-1047.
Shen J, Xia W, Khotskaya YB, Huo L, Nakanishi K, Lim SO, et al.(2013). EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497: 383-387.
Shu JL, Zhang XZ, Han L, Zhang F, Wu YJ, Tang XY, et al. (2019). Paeoniflorin-6’-O-benzene sulfonate alleviates collagen-induced arthritis in mice by downregulating BAFF-TRAF2-NF-kappaB signaling: comparison with biological agents. Acta Pharmacol Sin 40:801-813.
Song Y, Liu C, Liu X, Trottier J, Beaudoin M, Zhang L, et al.(2017). H19 promotes cholestatic liver fibrosis by preventing ZEB1-mediated inhibition of epithelial cell adhesion molecule. Hepatology 66: 1183-1196.
Troeger JS, Mederacke I, Gwak GY, Dapito DH, Mu X, Hsu CC, et al.(2012). Deactivation of hepatic stellate cells during liver fibrosis resolution in mice. Gastroenterology 143: 1073-1083 e1022.
Tu J, Guo Y, Hong W, Fang Y, Han D, Zhang P, et al. (2019). The Regulatory Effects of Paeoniflorin and Its Derivative Paeoniflorin-6’-O-Benzene Sulfonate CP-25 on Inflammation and Immune Diseases. Front Pharmacol 10: 57.
Wang DD, Jiang MY, Wang W, Zhou WJ, Zhang YW, Yang M, et al.(2020). Paeoniflorin-6’-O-benzene sulfonate down-regulates CXCR4-Gbetagamma-PI3K/AKT mediated migration in fibroblast-like synoviocytes of rheumatoid arthritis by inhibiting GRK2 translocation. Biochem Biophys Res Commun 526: 805-812.
Wang J, Pan J, Li H, Long J, Fang F, Chen J, et al. (2018). lncRNA ZEB1-AS1 Was Suppressed by p53 for Renal Fibrosis in Diabetic Nephropathy. Mol Ther Nucleic Acids 12: 741-750.
Wang QT, Zhang LL, Wu HX, & Wei W (2011). The expression change of beta-arrestins in fibroblast-like synoviocytes from rats with collagen-induced arthritis and the effect of total glucosides of paeony. J Ethnopharmacol 133: 511-516.
Xiao H, Wei H, Yang GB, Peng HL, & Zhang C (2011). [Effects of paeoniflorin on expressions of CTGF, PDGF and TNF-alpha in mice with hepatic fibrosis due to Schistosoma japonicum infection]. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 23: 288-291.
Yang J, Liu Q, Cao S, Xu T, Li X, Zhou D, et al. (2017). MicroRNA-145 Increases the Apoptosis of Activated Hepatic Stellate Cells Induced by TRAIL through NF-kappaB Signaling Pathway. Front Pharmacol 8: 980.
Yang J, Lu Y, Yang P, Chen Q, Wang Y, Ding Q, et al. (2019a). MicroRNA-145 induces the senescence of activated hepatic stellate cells through the activation of p53 pathway by ZEB2. J Cell Physiol 234: 7587-7599.
Yang J, Tao Q, Zhou Y, Chen Q, Li L, Hu S, et al. (2020). MicroRNA-708 represses hepatic stellate cells activation and proliferation by targeting ZEB1 through Wnt/beta-catenin pathway. Eur J Pharmacol 871: 172927.
Yang X, Zhao Y, Jia X, Wang C, Wu Y, Zhang L, et al. (2019b). CP-25 combined with MTX/ LEF ameliorates the progression of adjuvant-induced arthritis by the inhibition on GRK2 translocation. Biomed Pharmacother 110: 834-843.
Yang XD, Wang C, Zhou P, Yu J, Asenso J, Ma Y, et al. (2016). Absorption characteristic of paeoniflorin-6’-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats. Xenobiotica 46: 775-783.
Yuan DZ, Yu LL, Qu T, Zhang SM, Zhao YB, Pan JL, et al. (2015). Identification and characterization of progesterone- and estrogen-regulated MicroRNAs in mouse endometrial epithelial cells. Reprod Sci 22: 223-234.
Zhang H, Wang Y, Dou J, Guo Y, He J, Li L, et al. (2019). Acetylation of AGO2 promotes cancer progression by increasing oncogenic miR-19b biogenesis. Oncogene 38: 1410-1431.
Zhang X, Han X, Yin L, Xu L, Qi Y, Xu Y, et al. (2015). Potent effects of dioscin against liver fibrosis. Sci Rep 5: 9713.
Zhao F, Xu G, Zhou Y, Wang L, Xie J, Ren S, et al. (2014). MicroRNA-26b inhibits hepatitis B virus transcription and replication by targeting the host factor CHORDC1 protein. J Biol Chem 289:35029-35041.
Zhao Y, Zhou G, Wang J, Jia L, Zhang P, Li R, et al. (2013). Paeoniflorin protects against ANIT-induced cholestasis by ameliorating oxidative stress in rats. Food Chem Toxicol 58: 242-248.
Zhu L, Wei W, Zheng YQ, & Jia XY (2005). Effects and mechanisms of total glucosides of paeony on joint damage in rat collagen-induced arthritis. Inflamm Res 54: 211-220.