References
  1. T. Banerjee, K. Gottschling, G. Savasci, C. Ochsenfeld, B. V. Lotsch, H2 evolution with covalent organic framework photocatalysts, ACS Energy Lett. 3 (2018) 400-409.
  2. C. Bie, H. Yu, Bei Cheng, W. Ho, J. J. Fan, J. G. Yu, Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst, Adv. Mater. 33 (2021) 2003521.
  3. Q. L. Xu, B. C. Zhu, B. Cheng, J. G. Yu, M. H. Zhou, W. Ho, Photocatalytic H2 evolution on graphdiyne/g-C3N4 hybrid nanocomposites, Appl. Catal. B 255 (2019) 117770.
  4. D. D. Ren, Z. Z. Liang, Y. H. Ng, P. Zhang, Q. J. Xiang, X. Li, Strongly coupled 2D-2D nanojunctions between P-doped Ni2S (Ni2SP) cocatalysts and CdS nanosheets for efficient photocatalytic H2 evolution, Chem. Eng. J. 390 (2020) 124496.
  5. Q. Z. Wang, J. J. He, Y. B. Shi, S. L. Zhang, T. J. Niu, H. D. She, Y. P. Bi, Z. Q. Lei, Synthesis of MFe2O4(M = Ni, Co)/BiVO4 film for photolectrochemical hydrogen production activity, Appl. Catal. B 214 (2017) 158-167.
  6. R. C. Shen, Y. N. Ding, S. B. Li, P. Zhang, Q. J. Xiang, Y. H. Ng, X. Li, Constructing low-cost Ni3C/twin-crystal Zn0.5Cd0.5S heterojunction/homojunction nanohybrids for efficient photocatalytic H2 evolution, Chinese J. Catal. 42 (2021) 25-36.
  7. J. L. Yang, Y. L. He, H. Ren, H. L. Zhong, J. S. Lin, W. M. Yang, M. D. Li, Z. L. Yang, H. Zhang, Z. Q. Tian, J. F. Li, Boosting photocatalytic hydrogen evolution reaction using dual plasmonic antennas. ACS Catal. 11 (2021) 5047-5053.
  8. M. Y. Zhang, Q. Y. Hu, K. W. Ma, Y. Ding, C. Li, Pyroelectric effect in CdS nanorods decorated with a molecular Co-catalyst for hydrogen evolution, Nano Energy 73 (2020) 104810.
  9. Y. X. Li, P. Han, Y. L. Hou, S. Q. Peng, X. J. Kuang, Oriented ZnmIn2Sm+3@In2S3heterojunction with hierarchical structure for efficient photocatalytic hydrogen evolution, Appl. Catal. B 244 (2019) 604-611.
  10. X. W. Jiang, H. S. Gong, Q. W. Liu, M. X. Song, C. J. Huang, In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light, Appl. Catal. B 268 (2020) 118439.
  11. C. Xue, H. Li, H. An, B. L. Yang, J. J. Wei, G. D. Yang, NiSx quantum dots accelerate electron transfer in Cd0.8Zn0.2S photocatalytic system via an rGO nanosheet “bridge” toward visible-light-driven hydrogen evolution, ACS Catal. 8 (2018) 1532-1545.
  12. X. Liu, X. Q. Li, L. X. Qin, J. Mu, S. Z. Kang, Dramatic enhancement of the photocatalytic activity of Cd0.5Zn0.5S nanosheets via phosphorization calcination for visible-light-driven H2 evolution, J. Mater. Chem. A 5 (2017) 14682-14688.
  13. S. N. Guo, Y. L. Min, J. C. Fan, Q. J. Xu, Stabilizing and improving solar H2 generation from Zn0.5Cd0.5S nanorods@MoS2/RGO hybrids via dual charge transfer pathways, ACS Appl. Mate. Interfaces 8 (2016) 2928-2934.
  14. D. L. Huang, M. Wen, C. Y. Zhou, Z. H. Li, M. Cheng, S. Chen, W. J. Xue, L. Lei, Y. Yang, W. P. Xiong, W. J. Wang, ZnxCd1-xS based materials for photocatalytic hydrogen evolution, pollutants degradation and carbon dioxide reduction, Appl. Catal. B 267 (2020) 118651.
  15. M. L. Huang, X. Y. Luo, Z. Z. Ai, Y. L. Li, K. Zhang, Y. L. Shao, B. B. Huang, Y. Z. Wu, X. P. Hao, Band structure-controlled Zn1-xCdxS solid solution for photocatalytic hydrogen production improvement via appropriately enhancing oxidation capacity, Solar RRL 5 (2021) 2000685.
  16. Q. Li, H. Meng, P. Zhou, Y. Q. Zheng, J. Wang, J. G. Yu, J. R. Gong, Zn1-xCdxS solid solutions with controlled bandgap and enhanced visible-light photocatalytic H2-production activity, ACS Catal. 3 (2013) 882-889.
  17. Y. B. Li, Z. L. Jin, H. Liu, H. Y. Wang, Y. P. Zhang, G. R. Wang, Unique photocatalytic activities of transition metal phosphide for hydrogen evolution, J. Colloid and Interface Sci. 5451 (201) 287-299.
  18. A. Agarwal, B. R. Sankapal, Metal phosphides: topical advances in the design of supercapacitors, J. Mater. Chem. A 9 (202) 20241-20276.
  19. X. Li, A. M. Elshahawy, C. Guan, J. Wang, Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors, Small 13 (2017) 1701530.
  20. S. T. Oyama, T. Gott, H. Y. Zhao, Y. K. Lee, Transition metal phosphide hydroprocessing catalysts: A review, Catal. Today 143 (2009) 94-10.
  21. H. N. Ma, J. He, D. B. Xiong, J. S. Wu, Q. Q. Li, V. Dravid, Y. F. Zhao, Nickel cobalt hydroxide@reduced graphene oxide hybrid nanolayers for high performance asymmetric supercapacitors with remarkable cycling stability, ACS Appl. Mater. Interfaces 8 (2016) 1992-2000.
  22. X. Wang, H. M. Kim, Y. Xiao, Y. K. Sun, Nanostructured metal phosphide-based materials for electrochemical energy storage, J. Mater. Chem. A 4 (2016) 14915-14931.
  23. Y. M. Shia, B. Zhang, Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction, Chem. Soc. Rev. 45 (2016) 1529-1541.
  24. P. Liu, J. A. Rodriguez, Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface:  The importance of ensemble effect, J. Ame. Chem. Soc. 127 (2005) 14871-14878.
  25. Y. B. Li, Z. L. Jin, T. S. Zhao, Performance of ZIF-67-derived fold polyhedrons for enhanced photocatalytic hydrogen evolution, Chem. Eng. J. 382 (2020) 123051.
  26. S. Cao, Y. Chen, C. J. Wang, X. J. Lv, W. F. Fu, Spectacular photocatalytic hydrogen evolution usingmetal-phosphide/CdS hybrid catalysts under sunlight irradiation, Chem. Commun. 51 (2015) 8708-8711.
  27. J. Y. Kim, O. Voznyy, D. Zhitomirsky, E. H. Sargent, 25th anniversary article: Colloidal quantum dot materials and devices: A quarter-century of advances, Adv. Mater. 25 (2013) 4986-5010.
  28. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, J. C. Johnson, Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells, Chem. Rev. 110 (2010) 6873-6890.
  29. H. Moon, C. Lee, W. Lee, J. Kim, H. Chae, Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications, Adv. Mater. 31 (2019) 1804294.
  30. N. Shi, W. Cheng, H. Zhou, T. X. Fan, M. Niederberger, Facile synthesis of monodisperse Co3O4quantum dots with efficient oxygen evolution activity, Chem. Commun. 51 (2015) 1338-1340.
  31. B. Luo, R. Song, J. F. Geng, X. H. Liu, D. W. Jing, M. L. Wang, C. Cheng, Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4nanosheets for visible light driven photocatalytic H2production, Appl. Catal. B 256 (2019) 117819.
  32. X. Q. Hao, D. Z. Xiang, Z. L. Jin, Amorphous Co3O4 quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p-n heterojunction for a highly efficient photocatalytic H2 evolution, Dalton Trans. 50 (2021) 10501-10514.
  33. Y. N. Guo, J. Tang, H. Y. Qian, Z. L. Wang, Y. Yamauchi, One-pot synthesis of zeolitic imidazolate framework 67-derived hollow Co3S4@MoS2heterostructures as efficient bifunctional catalysts, Chem. Mater. 29 (2017) 5566-5573.
  34. H. M. Gong, X. Q. Hao, Z. L. Jin, Q. X. Ma, WP modified S-scheme Zn0.5Cd0.5S/WO3 for efficient photocatalytic hydrogen production, New J. Chem. 43 (2019) 19159.
  35. H. S. Gong, Z. Li, Z. H. Chen, Q. W. Liu, M. X. Song, C. J. Huang, NiSe/Cd0.5Zn0.5S composite nanoparticles for use in p-n heterojunction-based photocatalysts for solar energy harvesting, ACS Appl. Nano Mater. 3 (2020) 3665-3674.
  36. P. F. Wang, T. F. Wu, Y. H. Ao, C. Wang, Fabrication of noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple heterojunctions for efficient and robust photocatalyst hydrogen evolution under visible light irradiation, Renew. Energy 131 (2019) 180-186.
  37. S. S. Yi, J. M. Yan, B. Wulan, S. J. Li, K. H. Liu, Q. Jiang, Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation, Appl. Catal. B 200 (2017) 477-483.
  38. D. S. Dai, H. Xu, L. Ge, C. C. Han, Y. Q. Gao, S. S. Li, Y. Lu, In-situ synthesis of CoP co-catalyst decorated Zn0.5Cd0.5S photocatalysts with enhanced photocatalytic hydrogen production activity under visible light irradiation, Appl. Catal. B 217 (2017) 429-436.
  39. L. L. Wang, G. G. Tang, S. Liu, H. L. Dong, Q. Q. Liu, J. F. Sun, H. Tang, Interfacial active-site-rich 0D Co3O4/1D TiO2 p-n heterojunction for enhanced photocatalytic hydrogen evolution, Chem. Eng. J. 428 (2022) 131338.
  40. S. Cao, Y. Chen, H. Wang, J. Chen, X. H. Shi, H. M. Li, P. Cheng, X. F. Liu, M. Liu, L. Y. Piao, Ultrasmall CoP nanoparticles as efficient cocatalysts for photocatalytic formic acid dehydrogenation, Joule 2 (2018) 549-557.
  41. X. C. Wang, K. Maeda, X. F. Chen, K. Takanabe, K. Domen, Y. D. Hou, X. Z. Fu, M. Antonietti, Polymer semiconductors for artificial photosynthesis: Hydrogen evolution by mesoporous graphitic carbon nitride with visible light, J. Am. Chem. Soc. 131 (2009) 1680-1681.
  42. L. Tian, S. X. Min, F. Wang, Integrating noble-metal-free metallic vanadium carbide cocatalyst with CdS for efficient visible-light-driven photocatalytic H2 evolution, Appl. Catal. B 259 (2019) 118029.
  43. J. M. Yu, X. P. Gao, G. Z. Chen, X. X. Yuan, Electrocatalytic performance of commercial vanadium carbide for oxygen reduction reaction, Int. J. Hydrogen Energy 41 (2016) 4150-4158.