References
- T. Banerjee, K. Gottschling, G. Savasci, C. Ochsenfeld, B. V. Lotsch,
H2 evolution with covalent organic framework
photocatalysts, ACS Energy Lett. 3 (2018) 400-409.
- C. Bie, H. Yu, Bei Cheng, W. Ho, J. J. Fan, J. G. Yu, Design,
fabrication, and mechanism of nitrogen-doped graphene-based
photocatalyst, Adv. Mater. 33
(2021) 2003521.
- Q. L. Xu, B. C. Zhu, B. Cheng, J. G. Yu, M. H. Zhou, W. Ho,
Photocatalytic H2 evolution on
graphdiyne/g-C3N4 hybrid
nanocomposites, Appl. Catal. B 255 (2019) 117770.
- D. D. Ren, Z. Z. Liang, Y. H. Ng, P. Zhang, Q. J. Xiang, X. Li,
Strongly coupled 2D-2D nanojunctions between P-doped
Ni2S (Ni2SP) cocatalysts and CdS
nanosheets for efficient photocatalytic H2 evolution,
Chem. Eng. J. 390 (2020) 124496.
- Q. Z. Wang, J. J. He, Y. B. Shi, S. L. Zhang, T. J. Niu, H. D. She, Y.
P. Bi, Z. Q. Lei, Synthesis of MFe2O4(M = Ni, Co)/BiVO4 film for photolectrochemical
hydrogen production activity, Appl. Catal. B 214 (2017) 158-167.
- R. C. Shen, Y. N. Ding, S. B. Li, P. Zhang, Q. J. Xiang, Y. H. Ng, X.
Li, Constructing low-cost Ni3C/twin-crystal
Zn0.5Cd0.5S
heterojunction/homojunction nanohybrids for efficient photocatalytic
H2 evolution, Chinese J. Catal. 42 (2021) 25-36.
- J. L. Yang, Y. L. He, H. Ren, H. L. Zhong, J. S. Lin, W. M. Yang, M.
D. Li, Z. L. Yang, H. Zhang, Z. Q. Tian, J. F. Li, Boosting
photocatalytic hydrogen evolution reaction using dual plasmonic
antennas. ACS Catal. 11 (2021) 5047-5053.
- M. Y. Zhang, Q. Y. Hu, K. W. Ma, Y. Ding, C. Li, Pyroelectric effect
in CdS nanorods decorated with a molecular Co-catalyst for hydrogen
evolution, Nano Energy 73 (2020) 104810.
- Y. X. Li, P. Han, Y. L. Hou, S. Q. Peng, X. J. Kuang, Oriented
ZnmIn2Sm+3@In2S3heterojunction with hierarchical structure for efficient
photocatalytic hydrogen evolution, Appl. Catal. B 244 (2019) 604-611.
- X. W. Jiang, H. S. Gong, Q. W. Liu, M. X. Song, C. J. Huang, In situ
construction of NiSe/Mn0.5Cd0.5S
composites for enhanced photocatalytic hydrogen production under
visible light, Appl. Catal. B 268 (2020) 118439.
- C. Xue, H. Li, H. An, B. L. Yang, J. J. Wei, G. D. Yang,
NiSx quantum dots accelerate electron transfer in
Cd0.8Zn0.2S photocatalytic system via
an rGO nanosheet “bridge” toward visible-light-driven hydrogen
evolution, ACS Catal. 8 (2018) 1532-1545.
- X. Liu, X. Q. Li, L. X. Qin, J. Mu, S. Z. Kang, Dramatic enhancement
of the photocatalytic activity of
Cd0.5Zn0.5S nanosheets via
phosphorization calcination for visible-light-driven
H2 evolution, J. Mater. Chem. A 5 (2017) 14682-14688.
- S. N. Guo, Y. L. Min, J. C. Fan, Q. J. Xu, Stabilizing and improving
solar H2 generation from
Zn0.5Cd0.5S
nanorods@MoS2/RGO hybrids via dual charge transfer
pathways, ACS Appl. Mate. Interfaces 8 (2016) 2928-2934.
- D. L. Huang, M. Wen, C. Y. Zhou, Z. H. Li, M. Cheng, S. Chen, W. J.
Xue, L. Lei, Y. Yang, W. P. Xiong, W. J. Wang,
ZnxCd1-xS based materials for
photocatalytic hydrogen evolution, pollutants degradation and carbon
dioxide reduction, Appl. Catal. B 267 (2020) 118651.
- M. L. Huang, X. Y. Luo, Z. Z. Ai, Y. L. Li, K. Zhang, Y. L. Shao, B.
B. Huang, Y. Z. Wu, X. P. Hao, Band structure-controlled
Zn1-xCdxS solid solution for
photocatalytic hydrogen production improvement via appropriately
enhancing oxidation capacity, Solar RRL 5 (2021) 2000685.
- Q. Li, H. Meng, P. Zhou, Y. Q. Zheng, J. Wang, J. G. Yu, J. R. Gong,
Zn1-xCdxS solid solutions with
controlled bandgap and enhanced visible-light photocatalytic
H2-production activity, ACS Catal. 3 (2013) 882-889.
- Y. B. Li, Z. L. Jin, H. Liu, H. Y. Wang, Y. P. Zhang, G. R. Wang,
Unique photocatalytic activities of transition metal phosphide for
hydrogen evolution, J. Colloid and Interface Sci. 5451 (201) 287-299.
- A. Agarwal, B. R. Sankapal, Metal phosphides: topical advances in the
design of supercapacitors, J. Mater. Chem. A 9 (202) 20241-20276.
- X. Li, A. M. Elshahawy, C. Guan, J. Wang, Metal phosphides and
phosphates-based electrodes for electrochemical supercapacitors, Small
13 (2017) 1701530.
- S. T. Oyama, T. Gott, H. Y. Zhao, Y. K. Lee, Transition metal
phosphide hydroprocessing catalysts: A review, Catal. Today 143 (2009)
94-10.
- H. N. Ma, J. He, D. B. Xiong, J. S. Wu, Q. Q. Li, V. Dravid, Y. F.
Zhao, Nickel cobalt hydroxide@reduced graphene oxide hybrid nanolayers
for high performance asymmetric supercapacitors with remarkable
cycling stability, ACS Appl. Mater. Interfaces 8 (2016) 1992-2000.
- X. Wang, H. M. Kim, Y. Xiao, Y. K. Sun, Nanostructured metal
phosphide-based materials for electrochemical energy storage, J.
Mater. Chem. A 4 (2016) 14915-14931.
- Y. M. Shia, B. Zhang, Recent advances in transition metal phosphide
nanomaterials: synthesis and applications in hydrogen evolution
reaction, Chem. Soc. Rev. 45 (2016) 1529-1541.
- P. Liu, J. A. Rodriguez, Catalysts for hydrogen evolution from the
[NiFe] hydrogenase to the Ni2P (001) surface: The
importance of ensemble effect, J. Ame. Chem. Soc. 127 (2005)
14871-14878.
- Y. B. Li, Z. L. Jin, T. S. Zhao, Performance of ZIF-67-derived fold
polyhedrons for enhanced photocatalytic hydrogen evolution, Chem. Eng.
J. 382 (2020) 123051.
- S. Cao, Y. Chen, C. J. Wang, X. J. Lv, W. F. Fu, Spectacular
photocatalytic hydrogen evolution usingmetal-phosphide/CdS hybrid
catalysts under sunlight irradiation, Chem. Commun. 51 (2015)
8708-8711.
- J. Y. Kim, O. Voznyy, D. Zhitomirsky, E. H. Sargent, 25th anniversary
article: Colloidal quantum dot materials and devices: A
quarter-century of advances, Adv.
Mater. 25 (2013) 4986-5010.
- A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, J. C.
Johnson, Semiconductor quantum dots and quantum dot arrays and
applications of multiple exciton generation to third-generation
photovoltaic solar cells, Chem. Rev. 110 (2010) 6873-6890.
- H. Moon, C. Lee, W. Lee, J. Kim, H. Chae, Stability of quantum dots,
quantum dot films, and quantum dot light-emitting diodes for display
applications, Adv. Mater. 31 (2019) 1804294.
- N. Shi, W. Cheng, H. Zhou, T. X. Fan, M. Niederberger, Facile
synthesis of monodisperse Co3O4quantum dots with efficient oxygen evolution activity, Chem. Commun.
51 (2015) 1338-1340.
- B. Luo, R. Song, J. F. Geng, X. H. Liu, D. W. Jing, M. L. Wang, C.
Cheng, Towards the prominent cocatalytic effect of ultra-small CoP
particles anchored on g-C3N4nanosheets for visible light driven photocatalytic H2production, Appl. Catal. B 256 (2019) 117819.
- X. Q. Hao, D. Z. Xiang, Z. L. Jin, Amorphous
Co3O4 quantum dots hybridizing with 3D
hexagonal CdS single crystals to construct a 0D/3D p-n heterojunction
for a highly efficient photocatalytic H2 evolution,
Dalton Trans. 50 (2021) 10501-10514.
- Y. N. Guo, J. Tang, H. Y. Qian, Z. L. Wang, Y. Yamauchi, One-pot
synthesis of zeolitic imidazolate framework 67-derived hollow
Co3S4@MoS2heterostructures as efficient bifunctional catalysts, Chem. Mater. 29
(2017) 5566-5573.
- H. M. Gong, X. Q. Hao, Z. L. Jin, Q. X. Ma, WP modified S-scheme
Zn0.5Cd0.5S/WO3 for
efficient photocatalytic hydrogen production, New J. Chem. 43 (2019)
19159.
- H. S. Gong, Z. Li, Z. H. Chen, Q. W. Liu, M. X. Song, C. J. Huang,
NiSe/Cd0.5Zn0.5S composite
nanoparticles for use in p-n heterojunction-based photocatalysts for
solar energy harvesting, ACS Appl. Nano Mater. 3 (2020) 3665-3674.
- P. F. Wang, T. F. Wu, Y. H. Ao, C. Wang, Fabrication of
noble-metal-free CdS nanorods-carbon layer-cobalt phosphide multiple
heterojunctions for efficient and robust photocatalyst hydrogen
evolution under visible light irradiation, Renew. Energy 131 (2019)
180-186.
- S. S. Yi, J. M. Yan, B. Wulan, S. J. Li, K. H. Liu, Q. Jiang,
Noble-metal-free cobalt phosphide modified carbon nitride: an
efficient photocatalyst for hydrogen generation, Appl. Catal. B 200
(2017) 477-483.
- D. S. Dai, H. Xu, L. Ge, C. C. Han, Y. Q. Gao, S. S. Li, Y. Lu,
In-situ synthesis of CoP co-catalyst decorated
Zn0.5Cd0.5S photocatalysts with
enhanced photocatalytic hydrogen production activity under visible
light irradiation, Appl. Catal. B 217 (2017) 429-436.
- L. L. Wang, G. G. Tang, S. Liu, H. L. Dong, Q. Q. Liu, J. F. Sun, H.
Tang, Interfacial active-site-rich 0D
Co3O4/1D TiO2 p-n
heterojunction for enhanced photocatalytic hydrogen evolution, Chem.
Eng. J. 428 (2022) 131338.
- S. Cao, Y. Chen, H. Wang, J. Chen, X. H. Shi, H. M. Li, P. Cheng, X.
F. Liu, M. Liu, L. Y. Piao, Ultrasmall CoP nanoparticles as efficient
cocatalysts for photocatalytic formic acid dehydrogenation, Joule 2
(2018) 549-557.
- X. C. Wang, K. Maeda, X. F. Chen, K. Takanabe, K. Domen, Y. D. Hou, X.
Z. Fu, M. Antonietti, Polymer semiconductors for artificial
photosynthesis: Hydrogen evolution by mesoporous graphitic carbon
nitride with visible light, J. Am. Chem. Soc. 131 (2009) 1680-1681.
- L. Tian, S. X. Min, F. Wang, Integrating noble-metal-free metallic
vanadium carbide cocatalyst with CdS for efficient
visible-light-driven photocatalytic H2 evolution,
Appl. Catal. B 259 (2019) 118029.
- J. M. Yu, X. P. Gao, G. Z. Chen, X. X. Yuan, Electrocatalytic
performance of commercial vanadium carbide for oxygen reduction
reaction, Int. J. Hydrogen Energy 41 (2016) 4150-4158.