REFERENCES
1.
Field
JM, Hazinski MF, Sayre MR, Chameides L, Schexnayder SM, Hemphill R, et
al. Part 1: Executive summary: 2010 American Heart Association
Guidelines for Cardiopulmonary Resuscitation and Emergency
Cardiovascular Care. Circulation. 2010; 122: S640-S656.
2.
Shao
F, Li CS, Liang LR, Li D, Ma SK. Outcome of out-of-hospital cardiac
arrests in Beijing, China. Resuscitation. 2014; 85: 1411-1417.
3.
Myat A, Song KJ, Rea T. Out-of-hospital cardiac arrest: Current
concepts. Lancet. 2018; 391: 970-979.
4.
Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al.
Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment,
and prognostication. A consensus statement from the International
Liaison Committee on Resuscitation (American Heart Association,
Australian and New Zealand Council on Resuscitation, European
Resuscitation Council, Heart and Stroke Foundation of Canada,
InterAmerican Heart Foundation, Resuscitation Council of Asia, and the
Resuscitation Council of Southern Africa); The American Heart
Association Emergency Cardiovascular Care Committee; The Council on
Cardiovascular Surgery and Anesthesia; The Council on Cardiopulmonary,
Perioperative, and Critical Care; The Council on Clinical Cardiology;
And the Stroke Council. Circulation. 2008; 118: 2452-2483.
5.
Neumar RW. Molecular mechanisms of ischemic neuronal injury. Ann Emerg
Med. 2000; 36: 483-506.
6.
Sekhon
MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic
ischemic brain injury after cardiac arrest: A “two-hit” model. Crit
Care. 2017; 21: 90.
7.
Gueugniaud
PY, Garcia-Darennes F, Gaussorgues P, Bancalari G, Petit P, Robert D.
Prognostic significance of early intracranial and cerebral perfusion
pressures in post-cardiac arrest anoxic coma. Intensive Care Med. 1991;
17: 392-398.
8.
Chae MK, Ko E, Lee JH, Lee TR, Yoon H, Hwang SY, et al. Better
prognostic value with combined optic nerve sheath diameter and
grey-to-white matter ratio on initial brain computed tomography in
post-cardiac arrest patients. Resuscitation. 2016; 104: 40-45.
9.
Naito
H, Isotani E, Callaway CW, Hagioka S, Morimoto N. Intracranial pressure
increases during rewarming period after mild therapeutic hypothermia in
post cardiac arrest patients. Ther Hypothermia Temp Manag. 2016; 6:
189-193.
10.
Wagner
KR, Dean C, Beiler S, Bryan DW, Packard BA, Smulian AG, et al. Plasma
infusions into porcine cerebral white matter induce early edema,
oxidative stress, pro-inflammatory cytokine gene expression and DNA
fragmentation: Implications for white matter injury with increased
blood-brain-barrier permeability. Curr Neurovasc Res. 2005; 2:
149-155.
11.
Ronaldson
PT, Davis TP. Regulation of blood–brain barrier integrity by microglia
in health and disease: A therapeutic opportunity. J Cereb Blood Flow
Metab. 2020; 40: S6-S24.
12.
Vennekens
R, Nilius B. Insights into TRPM4 function, regulation and physiological
role. Handb Exp Pharmacol. 2007; 179: 269-285.
13.
Chen
X, Liu K, Lin Z, Huang K, Pan S. Knockout of transient receptor
potential melastatin 4 channel mitigates cerebral edema and neuronal
injury after status epilepticus in mice. J Neuropathol Exp Neurol. 2020;
79: 1354-1364.
14.
Wang
X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and
glibenclamide have comparable efficacy in treating acute ischemic stroke
in mice. Neuropharmacology. 2020; 162: 107845.
15.
Lee
JY, Choi HY, Na WH, Ju BG, Yune TY. Ghrelin inhibits BSCB
disruption/hemorrhage by attenuating MMP-9 and SUR1/TrpM4 expression and
activation after spinal cord injury. Biochim Biophys Acta Mol Basis Dis.
2014; 1842: 2403-2412.
16.
Jiang
B, Li L, Chen Q, Tao Y, Yang L, Zhang B, et al. Role of glibenclamide in
brain injury after intracerebral hemorrhage. Transl Stroke Res. 2017; 8:
183-193.
17.
Tosun
C, Kurland DB, Mehta R, Castellani RJ, DeJong JL, Kwon MS, et al.
Inhibition of the Sur1-Trpm4 channel reduces neuroinflammation and
cognitive impairment in subarachnoid hemorrhage. Stroke. 2013; 44:
3522-3528.
18.
Huang
K, Gu Y, Hu Y, Ji Z, Wang S, Lin Z, et al. Glibenclamide improves
survival and neurologic outcome after cardiac arrest in rats. Crit Care
Med. 2015; 43: e341-e349.
19. Huang K, Wang Z, Gu Y, Hu Y, Ji Z, Wang S, et al. Glibenclamide is
comparable to target temperature management in improving survival and
neurological outcome after asphyxial cardiac arrest in rats. J Am Heart
Assoc. 2016; 5: e3456.
20. Huang K, Wang Z, Gu Y, Ji Z, Lin Z, Wang S, et al. Glibenclamide
prevents water diffusion abnormality in the brain after cardiac arrest
in rats. Neurocrit Care. 2018; 29: 128-135.
21.
Kurland
DB, Gerzanich V, Karimy JK, Woo SK, Vennekens R, Freichel M, et al. The
Sur1-Trpm4 channel regulates NOS2 transcription in TLR4-activated
microglia. J Neuroinflamm. 2016; 13: 130.
22.
Simard
C, Sallé L, Rouet R, Guinamard R. Transient receptor potential
melastatin 4 inhibitor 9-phenanthrol abolishes arrhythmias induced by
hypoxia and re-oxygenation in mouse ventricle. Brit J Pharmacol. 2012;
165: 2354-2364.
23.
Guinamard
R, Demion M, Magaud C, Potreau D, Bois P. Functional expression of the
TRPM4 cationic current in ventricular cardiomyocytes from spontaneously
hypertensive rats. Hypertension. 2006; 48: 587-594.
24.
Yao Y,
Xu J, Yu T, Chen Z, Xiao Z, Wang J, et al. Flufenamic acid inhibits
secondary hemorrhage and BSCB disruption after spinal cord injury.
Theranostics. 2018; 8: 4181-4198.
25.
Simard
JM, Woo SK, Aarabi B, Gerzanich V.
The
Sur1-Trpm4 channel in spinal cord injury. J Spine. 2013; Suppl 4: 002.
26.
Daniels
MJD, Rivers-Auty J, Schilling T, Spencer NG, Watremez W, Fasolino V, et
al. Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against
Alzheimer’s disease in rodent models. Nat Commun. 2016; 7: 12504.
27.
Fernández
M, Lao-Peregrín C, Martín ED. Flufenamic acid suppresses epileptiform
activity in hippocampus by reducing excitatory synaptic transmission and
neuronal excitability. Epilepsia. 2010; 51: 384-390.
28.
Hayashida
K, Bagchi A, Miyazaki Y, Hirai S, Seth D, Silverman MG, et al.
Improvement in outcomes after cardiac arrest and resuscitation by
inhibition of S-Nitrosoglutathione reductase. Circulation. 2019; 139:
815-827.
29.
Kida
K, Minamishima S, Wang H, Ren J, Yigitkanli K, Nozari A, et al. Sodium
sulfide prevents water diffusion abnormality in the brain and improves
long term outcome after cardiac arrest in mice. Resuscitation. 2012; 83:
1292-1297.
30. Li
M, Chen S, Shi X, Lyu C, Zhang Y, Tan M, et al. Cell permeable
HMGB1-binding heptamer peptide ameliorates neurovascular complications
associated with thrombolytic therapy in rats with transient ischemic
stroke. J Neuroinflamm. 2018; 15: 237.
31.
Zhu J,
Li Z, Ji Z, Wu Y, He Y, Liu K, et al. Glycocalyx is critical for
blood‐brain barrier integrity by suppressing caveolin1‐dependent
endothelial transcytosis following ischemic stroke. Brain Pathol. 2021;
00: e13006.
32.
Zhu J,
Liu K, Huang K, Gu Y, Hu Y, Pan S, et al. Metformin improves neurologic
outcome via AMP‐activated protein kinase–mediated autophagy activation
in a rat model of cardiac arrest and resuscitation. J Am Heart Assoc
2018; 7: e008389.
33.
Hazelton
JL, Balan I, Elmer GI, Kristian T, Rosenthal RE, Krause G, et al.
Hyperoxic reperfusion after global cerebral ischemia promotes
inflammation and long-term hippocampal neuronal death. J Neurotrauma.
2010; 27: 753-762.
34.
Liu F,
McCullough LD. Inflammatory responses in hypoxic ischemic
encephalopathy. Acta Pharmacol Sin. 2013; 34: 1121-1130.
35.
Guinamard
R, Sallé L, Simard C. The non-selective monovalent cationic channels
TRPM4 and TRPM5. Adv Exp Med Biol. 2011; 704: 147-171.
36.
Laver
S, Farrow C, Turner D, Nolan J. Mode of death after admission to an
intensive care unit following cardiac arrest. Intensive Care Med. 2004;
30: 2126-2128.
37.
Ullrich
ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, et al.
Comparison of functional properties of the Ca2+-activated cation
channels TRPM4 and TRPM5 from mice. Cell Calcium. 2005; 37: 267-278.
38.
Guinamard
R, Simard C, Del Negro C. Flufenamic acid as an ion channel modulator.
Pharmacol Therapeut. 2013; 138: 272-284.
39.
Noppens
RR, Kelm RF, Lindemann R, Engelhard K, Werner C, Kempski O. Effects of a
single-dose hypertonic saline hydroxyethyl starch on cerebral blood
flow, long-term outcome, neurogenesis, and neuronal survival after
cardiac arrest and cardiopulmonary resuscitation in rats. Crit Care Med.
2012; 40: 2149-2156.
40.
Breil
M, Krep H, Heister U, Bartsch A, Bender R, Schaefers B, et al.
Randomised study of hypertonic saline infusion during resuscitation from
out-of-hospital cardiac arrest. Resuscitation. 2012; 83: 347-352.
41. Burks SR, Kersch CN, Witko JA, Pagel MA, Sundby M, Muldoon LL, et
al. Blood-brain barrier opening by intracarotid artery hyperosmolar
mannitol induces sterile inflammatory and innate immune responses. Proc
Natl Acad Sci U S A. 2021; 118: e2021915118.
42.
Lin Z,
Huang H, Gu Y, Huang K, Hu Y, Ji Z, et al. Glibenclamide ameliorates
cerebral edema and improves outcomes in a rat model of status
epilepticus. Neuropharmacology. 2017; 121: 1-11.
43.
Gerzanich
V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, et al. De
novo expression of Trpm4 initiates secondary hemorrhage in spinal cord
injury. Nat Med. 2009; 15: 185-191.
44.
David
S, Kroner A. Repertoire of microglial and macrophage responses after
spinal cord injury. Nat Rev Neurosci. 2011; 12: 388-399.
45.
Wang
J, Fujiyoshi T, Kosaka Y, Raybuck JD, Lattal KM, Ikeda M,et al.
Inhibition of soluble epoxide hydrolase after cardiac
arrest/cardiopulmonary resuscitation induces a neuroprotective phenotype
in activated microglia and improves neuronal survival. J Cereb Blood
Flow Metab. 2013; 33: 1574-1581.
46.
Grace
PM, Shimizu K, Strand KA, Rice KC, Deng G, Watkins LR, et al.
(+)-Naltrexone is neuroprotective and promotes alternative activation in
the mouse hippocampus after cardiac arrest/cardiopulmonary
resuscitation. Brain Behav Immun. 2015; 48: 115-122.
47.
Drabek
T, Janata A, Jackson EK, End B, Stezoski J, Vagni VA, et al. Microglial
depletion using intrahippocampal injection of liposome-encapsulated
clodronate in prolonged hypothermic cardiac arrest in rats.
Resuscitation 2012; 83: 517-526.
48.
Jiang
M, Li R, Lyu J, Li X, Wang W, Wang Z,et al. MCC950, a selective NLPR3
inflammasome inhibitor, improves neurologic function and survival after
cardiac arrest and resuscitation. J Neuroinflamm. 2020; 17: 256.
49. Liesz A, Dalpke A, Mracsko E, Antoine DJ, Roth S, Zhou W, et al.
DAMP signaling is a key pathway inducing immune modulation after brain
injury. J Neurosci. 2015; 35: 583-598.
50. Zhu J, Li X, Yin J, Hu Y, Gu Y, Pan S. Glycocalyx degradation leads
to blood–brain barrier dysfunction and brain edema after asphyxia
cardiac arrest in rats. J Cereb Blood Flow Metab. 2018; 38: 1979-1992.
51. Makar TK, Gerzanich V, Nimmagadda VKC, Jain R, Lam K, Mubariz
F,
et al. Silencing of Abcc8 or inhibition of newly upregulated Sur1-Trpm4
reduce inflammation and disease progression in experimental autoimmune
encephalomyelitis. J Neuroinflamm. 2015; 12: 210.
52. Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, et
al. TRPM4 cation channel mediates axonal and neuronal degeneration in
experimental autoimmune encephalomyelitis and multiple sclerosis. Nat
Med. 2012; 18: 1805-1811.
53. Nakayama S, Taguchi N, Isaka Y, Nakamura T, Tanaka M. Glibenclamide
and therapeutic hypothermia have comparable effect on attenuating global
cerebral edema following experimental cardiac arrest. Neurocrit Care.
2018; 29: 119-127.
54. Haruwaka K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A,
et al.
Dual
microglia effects on blood brain barrier permeability induced by
systemic inflammation. Nat Commun. 2019; 10: 5816.
55. Bernstein DL, Zuluaga-Ramirez V, Gajghate S, Reichenbach NL, Polyak
B, Persidsky Y, et al. MiR-98 reduces endothelial dysfunction by
protecting blood-brain barrier (BBB) and improves neurological outcomes
in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab.
2020; 40: 1953-1965.
56. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and
disruption of the blood-brain barrier. Nat Med. 2013; 19: 1584-1596.
57.
Aly
FA, Al-Tamimi SA, Alwarthan AA. Determination of flufenamic acid and
mefenamic acid in pharmaceutical preparations and biological fluids
using flow injection analysis with tris(2,2′-bipyridyl)ruthenium(II)
chemiluminescence detection. Anal Chim Acta. 2000; 416: 87-96.
58.
Khansari
PS, Halliwell RF. Mechanisms underlying neuroprotection by the NSAID
mefenamic acid in an experimental model of stroke. Front Neurosci. 2019;
13: 64.