Flow cytometry makers Source Target Conclusion Reference
CD133 (+), VEGFR-2(+) peripheral blood Correlation between EPC and PAH The number of EPC decreased in PAH patients (H. X. Sun et al., 2019)
CD34(+), CD146(+), CD45(+), CD309(+) Bone marrow Gene editing EPC therapy BMPR2-expressing EPC alleviate PAH (Harper et al., 2019)
CD34(+), CD133(+), CD309(+) peripheral blood Drug effect to EPC and PAH Riociguat increase the number of EPC to protect CTEPH (Yamamoto et al., 2020)
CD34(+) CD31(+), CD144(+), VEGFR-2(+), eNOS (+) peripheral blood Regulatory Pathway of EPC Stimulation of NOX2, NOX4 and VPO1 induce EPC’s apoptosis and dysfunction (E. L. Wang et al., 2019)
sca-1(+), CD117(+), VEGFR-2(+)
Bone marrow
extracellular vesicles’ different effect under different microenvironment
MSC-EV reduce the number of EPC in increase the expression of EPC genes in MCT-PH mice
(J. M. Aliotta et al., 2017)
CD31(+), VEGFR-2(+), CD144(+), CD34(+), CD14(+) peripheral blood Factors influence to distribution of EPC chemokine and cell Adhesion Molecules attract EPC to lung (Y. Liu et al., 2020)
CD34(+), CD133(+), CD31(+), CD45(+) Bone marrow Drug effect to EPC and PAH pinocembrin has a supportive effect to EPC in MCT-PH rats (Ahmed, Rizk, & El-Maraghy, 2017)
CD45(+), CD34(+), CD133(+) Bone marrow Correlation between EPC and PAH COPD patients have a lower level of EPCs (Pizarro et al., 2014)
CD34(+), VEGFR-2(+) Peripheral blood and lung tissue Correlation between EPC and PAH COPD patients have a lower level of EPCs, but COPD-PH patients have a higher level of EPCs (Y. Yang et al., 2018)
ZsGreen (+), CD117(+), CD45(+) Bone marrow Correlation between EPC and EHT Sugen-hypoxia mice’s EPCs unable to transfer PH pathology to recipient mice (Liang et al., 2017)
CD34(+), CD45(+), CD14(+) Peripheral blood Function of EPCs different markers EPCs have different function (Foris et al., 2016)
CD133 (+), VEGFR-2(+) Peripheral blood Correlation between EPC and PAH EPC number and vasculogenesis increase in 48h, but significantly reduce after 6 weeks (Xia et al., 2009)
CD31(+), VEGFR-2(+) Bone marrow Gene editing EPC therapy E2F1 deficiency EPCs improve the effect of EPC (S. Xu et al., 2018)
CD34(+), CD14(+), VEGFR-2(+) Peripheral blood Correlation between EPC and PAH number of EPCs is negatively correlated with the PAH (P. Liu et al., 2016)
CD45(+), CD34(+), CD133(+) Peripheral blood Correlation between EPC and PAH number of EPCs is significantly reduced in PAH patients (García-Lucio et al., 2017)
CD34(+), AC133(+), VEGFR-2(+)
Peripheral blood
Correlation between EPC and PAH
number of EPCs is significantly reduced in PAH patients
(Diller et al., 2008)
CD34(+), CD133(+) Peripheral blood Function of EPC therapy EPCs can reduce the symptoms of PAH (Q. Zhao et al., 2007)
CD31(+), VEGFR-2(+), vWF (+) Bone marrow Function of EPC therapy EPCs can alleviate PAH (C. K. Sun et al., 2012)
CD34(+), CD133(+), VEGFR-2(+)
Bone marrow
Function of EPC therapy
HIF1-EPCs can alleviate PAH
(Cao et al., 2015)
CD31(+), CD144(+), VEGFR-2(+) Peripheral blood Function of EPC therapy EPCs can improve the function of RV (Loisel et al., 2019)
CD31(+), CD14(+), CD34(+), VEGFR-2(+) Peripheral blood Function of EPC therapy EPCs show a no discernable therapeutic benefic (Ormiston, Deng, Stewart, & Courtman, 2010)
CD31(+), VEGFR-2(+) Lung tissue Correlation between EPC and PAH number of EPCs is significantly reduced in PAH patients (Duong et al., 2011)
VEGFR-2(+), Tie2(+), CD14(+), CD31(+), CD34(+) Bone marrow Function of EPC therapy Both COX1-PGIS-EPCs and EPCs can alleviate PAH (Zhou et al., 2013)
AC133(+), VEGFR-2(+) Peripheral blood Correlation between EPC and PAH number of EPCs is significantly reduced in PAH patients (Junhui et al., 2008)
CD34(+), CD133(+), VEGFR-2(+)
Peripheral blood
Correlation between EPC and lung disease
Progenitor cell types are present in the neointima of occluded vessels
(Yao et al., 2009)
CD34(+), CD144(+), CD31(+), VEGFR-2(+), eNOS (+) Peripheral blood Function of EPC therapy Inhibition of ROCK reduced EPCs senescence and alleviate PAH (B. Liu et al., 2016)