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Abstract 28 

Giant isopods are the most representative group of crustaceans living in the deep sea 29 

environment with a huge body size. In order to understand the genetic basis of these 30 

large animals to adapt the harsh oligotrophic environment of the deep-sea, the genome 31 

of a deep-sea (-898 m) giant isopod Bathynomus jamesi was sequenced and its 32 

genome characteristics were analyzed. The genome assembly of B. jamesi has a total 33 

length of 5.89 Gb with a contig N50 of 587.28 Kb, which is among the largest one 34 

with high continuity of the sequenced crustacean genomes. The large genome size of 35 

B. jamesi is mainly attributable to the proliferation of transposable elements, 36 

especially for DNA transposons and CR1-type LINEs, which account for more than 37 

84% of the genome. A number of expanded gene families in the genome were 38 

enriched in thyroid and insulin hormone signaling pathways, which might have driven 39 

the evolution of its huge body size. Transcriptomic analysis showed that several 40 

expanded gene families related to glycolysis and vesicular transport were specifically 41 

expressed in its digestive organs, revealing the molecular mechanism of nutrient 42 

absorption and utilization in oligotrophic environment adaptation. Taken together, the 43 

giant isopod genome provides a valuable resource for understanding the body size 44 

evolution and adaptation mechanisms of macrobenthos to the deep-sea environment. 45 

Keywords: Giant isopod, Deep-sea, Genome assembly, Body size evolution, 46 

Oligotrophic adaptation 47 
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1 | INTRODUCTION 50 

    Isopods are a large group of crustaceans with more than 10,000 species have 51 

been described. So far, Isopoda is one of the limited groups that widely distributed in 52 

various environments, as they have been found in all seas at different depths, in fresh 53 

and brackish waters, and on land (Fig. 1A) (Hartebrodt, 2020). Therefore, Isopoda is 54 

an ideal model for studying migration and speciation, especially for the migration 55 

between deep-sea and shallow-water, and between water and land, which are hot 56 

research topics attracting world-wide attentions. There are considerable controversies 57 

about the hypothesis of the origin of life. Generally, terrestrial organisms should have 58 

evolved from marine relatives, whereas some marine organisms (such as mammals) 59 

are regarded to have evolved from terrestrial relatives (Foote et al., 2015). Besides, 60 

other theories suggest that life may originate from deep-sea hydrothermal vents 61 

because their rocky nooks can provide mineral catalysts for some vital biochemical 62 

reactions (Herschy et al., 2014; Lindner, Cairns, & Cunningham, 2008). Due to their 63 

widespread distribution, comparative genomics of isopods can provide important 64 

clues to the migration and evolutionary history of crustaceans. 65 

Notably, isopods are one of the most morphologically diverse groups of 66 

crustaceans. Its size ranges from 0.5 cm (dwarf species) to as big as 50 cm for giant 67 

isopods (Ono, Tada, & Kose, 2017). Consistent with the Cope-Bergmann's Rule, 68 

isopods from deep sea tend to be larger than their relatives in shallower waters (Hunt 69 

& Roy, 2006). As the largest extant animals on the planet are aquatic and many of 70 

them are deep-sea organisms, the impact of marine habitats and evolutionary adaption 71 
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on body size is mysterious (Weber et al., 2020). Besides, body size has always been 72 

regarded as one of the most important quantitative traits in evolutionary scrutiny, 73 

which is strongly correlated with many physiological and fitness characters 74 

(Blanckenhorn, 2000). Thus, isopods provide an excellent model for studying the 75 

adaptive evolution of body size. Whereas, even with a great number of species, only 76 

two isopods, Armadillidium vulgare and Armadillidium nasatum, have been 77 

sequenced so far, and they are both terrestrial (Becking et al., 2019; Chebbi et al., 78 

2019). Genomics of marine isopods, especially deep-sea species, is far from being 79 

understood. 80 

Bathynomids (Crustacea: Isopoda: Cirolanidae) is regarded to be the “supergiant 81 

group” of isopods, which is well known for their big size (Brionesfourzan & 82 

Lozanoalvarez, 1991; Sankar et al., 2011). Bathynomids inhabit deep-sea benthic 83 

environment that are generally found on muddy bottoms at the depth of 170 m to the 84 

dark of 2140 m (Cocke, 1986; Sankar et al., 2011). To adapt to the benthic 85 

environment, a burrowing behavior has been adaptively applied for bathynomids 86 

(Matsui, Moriyama, & Kato, 2011). Besides, in order to adapt to the oligotrophic 87 

environment of the deep sea, the full-filled stomach of bathynomids accounts for 88 

approximately 2/3 of the whole body, which is conducive to food storage (Fig. 1B). In 89 

addition, midgut glands and adipocytes (collectively called "fat body") are distributed 90 

throughout the body of bathynomids to store organic reserves (Biesiot, Wang, Perry, 91 

& Trigg, 1999). Furthermore, bathynomids are well known for their extremely long 92 

hunger strikes (over five years), which should be the longest record to date (Ginn, 93 



5 
 

Beisel, & Barua, 2014). Larger animals usually have greater absolute energy 94 

requirements (Clauss et al., 2003). However, the deep sea conditions are harsh and 95 

food resources are limited, which seems to be unsuitable for the survival of giant 96 

animals (Martins, Queiroz, Santos, & Bettencourt, 2013; Wang et al., 2019). 97 

Therefore, a special mechanism should be developed for these supergiant isopods to 98 

adapt to the deep-sea oligotrophic conditions. The giant isopods provide a good model 99 

for understanding the mechanism for nutrient storage and utilization. 100 

    Deep sea expeditions provide an excellent opportunity for us to learn how 101 

animals adapt to the deep-sea environment. During a recent expedition near Hainan 102 

Island in the northern South China Sea, a new deep-sea (a depth of 898 m) 103 

bathynomid species, Bathynomus jamesi sp. nov., was collected and identified (Kou, 104 

Chen, Li, He, & Wang, 2017). In this study, a high-quality genome assembly of B. 105 

jamesi was generated using PacBio sequencing technology. Analysis of the genomic 106 

characteristics identified potential factors related to the evolution of the size of the B. 107 

jamesi genome. Based on the comparisons between the genomes of B. jamesi and its 108 

terrestrial relatives and other crustaceans, we have identified some expanded gene 109 

families related to its body size evolution and deep-sea environment adaptation. This 110 

high-quality genome will provide valuable resources for further understanding of the 111 

evolutionary history of isopods and their deep-sea environmental adaptation 112 

mechanisms. 113 

 114 

 115 
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2| MATERIALS AND METHODS 116 

2.1 | Sampling and sequencing 117 

    The specimens of B. jamesi were collected by a deep-sea lander at a depth of 898 118 

m near Hainan Island, in the northern South China Sea (17°46.845'N, 110°38.217'E). 119 

The specimens were identified as the species B. jamesi and kept in 75% ethanol and 120 

-80℃ freezer (Kou et al., 2017). The muscle of the legs of B. jamesi was collected for 121 

DNA extraction and genome sequencing. Total genomic DNA was extracted using 122 

TIANamp Marine Animal DNA Kits (Tiangen, Beijing, China), and used for Illumina 123 

and PacBio sequencing.  124 

    For Illumina sequencing, paired-end libraries with short insert size (350 bp) were 125 

constructed according to the instructions of the Illumina library preparation kit 126 

(Illumina, San Diego, USA). The constructed libraries were sequenced on an Illumina 127 

HiseqX-ten sequencing platform (Illumina, San Diego, USA). The raw sequencing 128 

reads were trimmed for quality subsequently using Trimmomatic v.0.35 129 

(http://www.usadellab.org/cms/index.php?page=trimmomatic), and the retained clean 130 

reads were used for subsequent analyses. 131 

    For PacBio sequencing, genomic DNA was sheared to ~20 Kb, and the short 132 

fragments below the size of 10 Kb were filtered out using BluePippin (Sage Science, 133 

Beverly, USA). Filtered DNA was then used for the construction of the proprietary 134 

SMRTbell library using PacBio DNA Template Preparation Kit. SMRTbell libraries 135 

were used for single-molecule real time (SMRT) sequencing using the P6C5 136 

sequencing chemistry (Pacific Biosciences, San Diego, USA), and then sequenced on 137 
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the PacBio RSII sequencing platform (Pacific Biosciences, San Diego, USA). 138 

2.2 | RNA extraction and sequencing 139 

    In order to perform gene annotation and identification of tissue-specific 140 

expression genes, transcriptome sequencing was performed on six tissues of B. jamesi, 141 

namely gill, hepatopancreas, muscle, stomach, intestine, and nerve. According to the 142 

standard manufacturer’s protocol, total RNA was isolated and purified from each 143 

tissue using TRIzol extraction reagent (Thermo Fisher Scientific, USA). RNA quality 144 

was determined by 1% agarose gel electrophoresis, and RNA concentration was 145 

assessed using a Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific, USA). 146 

Transcriptome libraries were prepared according to the instructions of the TruSeq 147 

RNA Library Prep Kit (Illumina, San Diego, USA), and then sequenced on the 148 

Illumina HiSeq 2500 platform. The transcriptome reads were mapped to the genome 149 

using TopHat v1.2.1 (Trapnell, Pachter, & Lsalzberg, 2009). Then, fragments per 150 

kilobase of transcript per million fragments mapped (FPKM) was calculated using 151 

Cufflinks v2.2.1 (http://cole-trapnell-lab.github.io/cufflinks/). The differential gene 152 

expression analysis was conducted by using edgeR V3.10 (Robinson, McCarthy, & 153 

Smyth, 2010). 154 

2.3 | Genome size estimation 155 

    Genome size of B. jamesi was estimated by K-mer analysis, which is widely 156 

used for the estimation of genome size and repeat content. Jellyfish was used to 157 

calculate K-mer frequencies based on the high-quality reads from the Illumina 158 

sequencing data (Marcais & Kingsford, 2011). A K-mer depth distribution was plotted 159 
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and the peak depth could be identified. The genome size was estimated as the ratio of 160 

the total number of K-mers to the peak depth.  161 

2.4| Genome assembly and quality assessment 162 

    The B. jamesi genome was de novo assembled based on PacBio subreads using 163 

FALCON pipeline (https://github.com/PacificBiosciences/FALCON/) with default 164 

parameters. The assembled sequences were then polished using Quiver (SMRT 165 

Analysis v2.3.0) based on the alignment of PacBio reads to the assembly. Besides, In 166 

order to make the genome assembly more accurate, several rounds of iterative error 167 

correction were performed using the aforementioned Illumina clean data. 168 

    To assess the quality of the genome assembly, Illumina sequencing reads were 169 

aligned to the genome using Bowtie2 and the genome coverage was calculated 170 

(Langmead & Salzberg, 2012). Besides, the unigenes from the transcriptome data 171 

were mapped to the B. jamesi genome to assess the completeness of the gene regions. 172 

In addition, the sets of Benchmarking universal single-copy orthologs (BUSCO) was 173 

used to evaluate the completeness of the genome assembly 174 

(http://gitlab.com/ezlab/busco). 175 

2.5| Repetitive sequence annotation 176 

Transposable elements (TEs) in the B. jamesi genome were predicted by a 177 

combination of de novo-based and homology-based approaches. For TE annotation, 178 

both RepeatModeler and RepeatMasker were used to perform de novo identification 179 

(Tarailo-Graovac & Chen, 2009). RepeatMasker was used to identify transposable 180 

elements by aligning genome sequences against RepBase (RepBase21.04) and a local 181 
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library generated by RepeatModeler with default parameters.  182 

For phylogenetic analysis of TEs, MUSCLE was used for multiple alignments of 183 

each cluster of TEs in a fast mode (-maxiters 2 -diags1) (Edgar, 2004). Based on the 184 

alignment results, a maximum likelihood (ML) method was used for phylogenetic tree 185 

construction with the parameters of “-n 1 -o tl -m 012345”. The visualization of the 186 

tree was performed on the iTOL (https://itol.embl.de/). 187 

2.6| Protein-coding gene prediction and annotation 188 

    Protein-coding genes were predicted through a combination of de novo 189 

prediction, homology-based prediction and transcriptome-based prediction methods. 190 

For de novo prediction, the coding regions of the repeat-masked genome were 191 

predicted by Augustus v2.5.5 (Stanke, Steinkamp, Waack, & Morgenstern, 2004). For 192 

homology-based prediction, protein-coding genes from Daphnia pulex, Eulimnadia 193 

texana, Litopenaeus vannamei, Parhyale hawaiensis, Drosophila melanogaster, 194 

Bombyx mori and Anopheles gambiae were downloaded from NCBI and mapped 195 

against the B. jamesi genome with Exonerate v2.2.0 196 

(http://www.ebi.ac.uk/~guy/exonerate/). For transcriptome-based prediction, the 197 

transcriptome data were aligned to the B. jamesi genome using Tophat v2.1.1. Then, 198 

Cufflinks v2.2.1 was used to convert the transcripts to gene models (Trapnell et al., 199 

2009). Finally, all gene models predicted by above three methods were integrated into 200 

a non-redundant gene set through EvidenceModeler (EVM) (Haas et al., 2008). 201 

    Functional annotation of the predicted genes was conducted by blasting against 202 

the NR and SwissProt databases using BLASTP program. Protein domains were 203 
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annotated by mapping the genome to the InterPro and Pfam databases using 204 

InterProScan and HMMER. (Prakash, Jeffryes, Bateman, & Finn, 2017; Zdobnov & 205 

Apweiler, 2001). KEGG Automatic Annotation Server (KAAS) was used to annotate 206 

the pathways in which the genes might be involved through mapping against the 207 

KEGG database (https://www.genome.jp/kaas-bin/kaas_main). The Gene Ontology 208 

(GO) classifications of the genes were extracted from the corresponding InterProScan 209 

or Pfam results (http://geneontology.org/docs/go-annotations/).  210 

2.7| Gene family analyses 211 

    To understand the evolutionary dynamics of the genes, gene family clustering 212 

analysis was performed through using OrthoMCL (L. Li, Stoeckert, & Roos, 2003). 213 

An all-to-all blast search was conducted on the protein-coding genes of 20 arthropods 214 

using BLASTP program, including B. jamesi, A. vulgare, Amphibalanus Amphitrite, 215 

Acyrthosiphon pisum, Anopheles gambiae, D. pulex, E. texana, Eurytemora affinis, L. 216 

vannamei, Eriocheir sinensis, Procambarus virginalis, P. hawaiensis, Pediculus 217 

humanus, Tigriopus californicus, Strigamia maritima, Ixodes scapularis, Tetranychus 218 

urticae, D. melanogaster, B. mori, and Locusta migratoria.  219 

    Expansion and contraction of the gene families among these 20 species were 220 

determined. Base on the clustering results calculated by OrthoMCL, gene gain and 221 

loss analysis was conducted by CAFE v4.2 [84]. The expansion and contraction of 222 

each gene family was examined by comparing cluster size differences between 223 

ancestors and each current species. A random birth and death process model was used 224 

to identify gene gain and loss along each lineage of the RAxML tree. 225 
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2.8| Phylogenetic analysis 226 

According to the results of gene family clustering, 19 single-copy orthologous 227 

genes were selected for phylogenetic tree construction. The amino acid sequence 228 

alignment was conducted using MUSCLE with the default settings (Edgar, 2004). The 229 

conserved alignments of the single-copy genes were concatenated to form the final 230 

alignment matrix. Then, the maximum likelihood (ML) method was used for 231 

phylogenetic tree construction under the JTT+G+Inv model using RAxML 232 

(Stamatakis, 2014). ML phylogeny and branch lengths were obtained by RaxML with 233 

1000 bootstrap replicates. The divergence time estimation was conducted by 234 

combining programs of r8s and RAxML (Yang, 1997). Fossil-derived timescales and 235 

evolutionary history were obtained from TIMETREE.  236 

 237 

3| RESULTS AND DISCUSSION 238 

3.1 | Genome assembly and annotation 239 

To estimate genome size of B. jamesi, a total of 235.25 Gb Illumina short reads 240 

were generated and utilized for genome survey analysis (Supplementary Table S1). 241 

K-mer analysis indicated that the genome size of B. jamesi is approximately 5.24 Gb 242 

(Supplementary Fig. S1), which was larger than most crustacean genomes reported so 243 

far (Supplementary Table S2). The heterozygosity rate of B. jamesi was estimated to 244 

be 0.69% and the content of repetitive sequences was about 89.7%. 245 

To assemble the genome of B. jamesi, 360.80 Gb of PacBio reads with an 246 

average length of 13 Kb were generated, covering about 69-fold of the genome 247 
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(Supplementary Table S1). The PacBio data was assembled into contigs using 248 

FALCON, and then polished by raw PacBio and Illumina sequencing data for five 249 

rounds. The final assembly was 5.89 Gb in total length with a contig N50 length of 250 

587.28 Kb and GC content of 37.28%, showing a higher continuity than the genome 251 

of the terrestrial isopod A. vulgare (contig N50 of 38.36 Kb) and many other 252 

crustacean genomes as well (Table 1)(Chebbi et al., 2019). 253 

To assess the quality of genome assembly, the Illumina sequencing data and 254 

RNA-seq data were aligned to the B. jamesi genome. A total of 99.80% of Illumina 255 

reads and 84.23% of RNA-seq reads were mapped on the genome (Supplementary 256 

Table S3). BUSCO analysis showed that 94.98% of BUSCOs were covered by the B. 257 

jamesi genome, which was comparable to many recent sequenced crustacean genomes 258 

(Table 1, Supplementary Fig. S2, Table S4) (Chebbi et al., 2019; Cui et al., 2021; 259 

Yuan et al., 2021; Zhang et al., 2019). 260 

A total of 23,221 protein-coding genes were predicated in the B. jamesi genome 261 

with the average lengths of genes, exons and introns of 936 bp, 223 bp, 3,010 bp, 262 

respectively (Table 1). The average exon number per gene was 4.18, which was also 263 

similar to that of A. vulgare (4.93). The average intron length of genes (3,010 bp) was 264 

significantly longer than that of A. vulgare (1,872 bp) and many other crustacean 265 

genomes with relative smaller genome size (Table 1). It is consistent with the view 266 

that genome size is positively correlated with intron size (Wendel et al., 2002). A total 267 

of 22,886 predicted genes (98.56%) have been annotated with putative functions 268 

through blasting against the databases of NR, Swissprot, interPro and GO 269 
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(Supplementary Fig. S3).  270 

3.2 | TEs and genome evolution 271 

According to the Animal Genome Size Database (www.genomesize.com), the 272 

C-value of isopods ranges from 1.71 to 8.82 pg, indicating there is a 5.2-fold variation 273 

of their genome sizes (Supplementary Table S5). B. jamesi has a largest genome (5.89 274 

Gb) among sequenced crustacean genomes (Supplementary Table S2), which is about 275 

3.4-fold larger than that of the A. vulgare genome (1.73 Gb). K-mer analysis showed 276 

that 89.7% of the B. jamesi genome was composed of repetitive sequences, suggesting 277 

that repeat proliferation might be the driving force for the genome expansion of B. 278 

jamesi (Fig. 2A). Based on the RepBase and a local repeat database that generated by 279 

RepeatModeler, a total of 5.03 Gb sequences (85.32%) were annotated as repeats, 280 

which was significantly higher than other crustaceans (p < 0.05, Table 2, 281 

Supplementary Table S2). TEs and simple sequence repeats (SSRs) accounted for 282 

84.27% and 0.65% of the B. jamesi genome, respectively. Different from B. jamesi, 283 

the A. vulgare genome contained abundant SSRs (18.08%), which is similar to the 284 

penaeid shrimp species (19.50% - 23.93%) (Yuan et al., 2021). 285 

Since TEs accounted for 98.77% of the total repeats of B. jamesi, we next 286 

analyzed TEs in this genome in detail. DNA transposons (35.99%), long interspersed 287 

nuclear elements (LINEs, 19.36%) and long terminal repeats (LTRs, 5.95%) were 288 

three major classes of TEs in the B. jamesi genome (Table 2). The content of LINEs 289 

and LTRs in the genome of B. jamesi was very similar to its land relative A. vulgare. 290 

Among them, two typical LINEs (CR1 and Penelope) and two types of LTRs (Pao and 291 
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Gypsy) showed apparent proliferation in the genomes of B. jamesi and A. vulgare. 292 

Notably, DNA transposon was the most abundant TE (35.99%) in the B. jamesi 293 

genome, and its content was significantly higher than that of A. vulgare (7.08%, p < 294 

0.05). Five types of DNA transposons, including TcMar-Tc1 (6.05%), hAT-hATm 295 

(5.77%), Maverick (5.08%), En-Spm (3.28%) and hAT-Tip100 (2.67%), were 296 

significantly expanded in the B. jamesi genome in comparison with A. vulgare (Table 297 

2, p < 0.05). 298 

To confirm the time of TE proliferation, we performed a divergence time 299 

estimation of TEs. More than 95% of TEs had a divergence rate of <20%, indicating 300 

that most TEs in the B. jamesi genome are relatively young (Fig. 2B). Thus, a 301 

remarkable TE expansion event might have occurred not long ago. The CR1-type 302 

LINE was the most abundant TE of both B. jamesi and A. vulgare, which accounted 303 

for 9.13% and 14.46% of the two genomes, respectively (Table 2). However, 304 

phylogenetic analysis of the total CR1-type LINEs of the two genomes showed that 305 

these TEs proliferated independently in the two isopods, rather than derived from 306 

their ancestor (Fig. 2C). In contrast to B. jamesi, CR1-type LINEs were relatively 307 

more ancient in A. vulgare with a divergence rate of >20% (Supplementary Fig. S4). 308 

DNA transposon was the most abundant TEs (2.12 Gb) of the B. jamesi genome, 309 

which were also proliferated in a recent time like that of CR1 (Supplementary Fig. 310 

S4). Therefore, the genome expansion of B. jamesi driven by proliferation of DNA 311 

transposons and LINEs should have occurred in a recent time. 312 

Previous studies suggested that TEs enriched in the promoters of genes play an 313 
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important role in regulating gene expressions in response to different stresses (Wicker 314 

et al., 2018). Thus, we next analyzed the TEs surrounding genes and calculated their 315 

distance to the gene body. Different from previous report that TEs are usually 316 

enriched in upstream and downstream of genes immediately (within 2 Kb) (Wicker et 317 

al., 2018), TEs in the genome of B. jamesi were uniformly distributed surrounding 318 

genes (from initiation site to 10Kb), especially for LINEs, LTRs and Maverick of 319 

DNA transposons (Supplementary Fig. S5). Exceptionally, TcMar, En-Spm and hAT 320 

of DNA transposon and SINEs showed relative enrichment surrounding genes (within 321 

2 Kb). In order to determine which types of TEs should be potentially associated with 322 

gene expression, the neighboring TEs of total genes were investigated. It was 323 

interesting to find that although many types of TEs (e.g., Maverick, TcMar-Tc1, 324 

hAT-hATm, CR1, Penelope and Pao) proliferated significantly in the B. jamesi 325 

genome, they were less distributed surrounding genes than other genomic regions (p 326 

<0.05, Fig. 2D). In contrast, some TEs with lower abundance were significantly 327 

enriched in the promoters of genes, including Academ, En-Spm, TcMar-Tigger, 328 

hAT-Charlie, RTE-BovB and SINE. Therefore, we suggest the significant proliferation 329 

of TEs should perform a more profound impact on the evolution of the whole genome 330 

rather than on architecture of protein-coding genes. 331 

3.3 | Comparative genomics 332 

Comparative genomics analysis was performed between B. jamesi and 19 other 333 

arthropod species, and a total of 16,474 gene families were identified. Among them, 334 

1549 gene families were commonly shared by 20 species, and 364 gene families were 335 
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isopod-specific (Fig. 3A, Supplementary Table S6). Besides, 4235 core gene families 336 

were shared by four malacostraceans (B. jamesi, A. vulgare, E. sinensis and L. 337 

vannamei), and 4698 gene families were specific in B. jamesi (Fig. 3B). 338 

Based on the 19 orthologous single-copy genes, a phylogenetic tree was 339 

constructed (Fig. 3A). As expected, the two isopods (B. jamesi and A. vulgare) were 340 

clustered together and then nested by the other four malacostraceans. Isopods were 341 

estimated to be diverged from their ancestor around 376 million years ago (Mya), 342 

which is a time of the Late Devonian epoch. The deep-sea isopod (B. jamesi) and the 343 

terrestrial isopod (A. vulgare) were estimated to divergent around 257 Mya, which is 344 

consistent with the fossil records of Oniscidea (219.6 – 358.9 Mya) (Lins, Ho, & Lo, 345 

2017). Besides, there is a record showing that the deep-sea isopod Bathynomus 346 

giganteus has already existed as early as 160 Mya (Shen et al., 2017). Therefore, 347 

deep-sea isopods should originate between 160 and 257 Mya. 348 

Based on the phylogenetic tree, the expansion and contraction of gene families 349 

were calculated among 20 arthropod species (Fig. 3 A). A total of 226 significantly 350 

expanded gene families and 144 contracted families were identified in the B. jamesi 351 

genome (p < 0.05, Supplementary Table S7). The expanded gene families were 352 

functional enriched in the gene ontology (GO) terms related to membrane 353 

(GO:0016020, membrane; GO:0016021, integral component of membrane), peptidase 354 

activity (GO:0008238, exopeptidase activity; GO:0004866, endopeptidase inhibitor 355 

activity; GO:0016805, dipeptidase activity; GO:0008235, metalloexopeptidase 356 

activity; GO:0070573, metallodipeptidase activity; GO:0008237, metallopeptidase 357 
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activity; GO:0004180, carboxypeptidase activity), receptor activity (GO:0004872, 358 

receptor activity; GO:0038023, signaling receptor activity; GO:0099600, 359 

transmembrane receptor activity; GO:0004888, transmembrane signaling receptor 360 

activity; GO:0008066, glutamate receptor activity; GO:0004970, ionotropic glutamate 361 

receptor activity; GO:0001653, peptide receptor activity; GO:0004930, G-protein 362 

coupled receptor activity), and signal transduction (GO:0007165, signal transduction; 363 

GO:0007154, cell communication; GO:0044700, single organism signaling; 364 

GO:0050794, regulation of cellular process) (Supplementary Table S8). KEGG 365 

analysis significantly linked some of the expanded genes to signal transduction 366 

(cAMP signaling pathway, neuroactive ligand-receptor interaction, Cell adhesion 367 

molecules (CAMs), and several signaling pathways) and endocrine systems 368 

(renin-angiotensin system and thyroid hormone signaling pathway) (Fig. 3C, 369 

Supplementary Fig. S6). 370 

3.4 | Gene families related to large body size 371 

B. jamesi is a giant isopod with a body length of > 20 cm, which is significantly 372 

larger than its shallow-water and terrestrial relatives (mostly < 1 cm). Comparative 373 

genomics approach helps us discover the genetic characteristics associated with the 374 

body size evolution of giant isopods. 375 

Comparative genomic analysis of B. jamesi and A. vulgare showed that the 376 

expanded gene families of B. jamesi was significantly enriched in the thyroid 377 

hormone signaling pathway (p = 2E-06) (Fig. 3C, Supplementary Fig. S6), which is 378 

an important pathway in regulating growth, development and metabolism (Mourouzis, 379 
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Lavecchia, & Xinaris, 2020). Many gene families related to thyroid hormone 380 

synthesis and secretion were significantly expanded and tandem duplicated in the B. 381 

jamesi genome, including phosphatidylinositol phospholipase C (PLC, 14 members), 382 

inositol 1,4,5-triphosphate receptor type 1 (ITPR1, 4 members), low density 383 

lipoprotein-related protein 2 (LPR2, 23 members), adenylate cyclase (ADCY, 14 384 

members), serine/threonine-protein kinase mTOR (MTOR, 5 members), tuberous 385 

sclerosis 2 (TSC2, 6 members), and mediator of RNA polymerase II transcription 386 

subunit (MED, 18 members). Thyroid hormone (TH) signaling is regarded as a key 387 

modulator of fundamental biological processes that has been evolutionarily conserved 388 

in both vertebrate and invertebrate species. Thyroid peroxidase (TPO), thyroid 389 

hormone receptor α (TRα) and β (TRβ), and thyroid receptor-interacting protein 11 390 

(TRIP11) are four key enzymes in TH biosynthesis and signaling transduction. Seven 391 

TPO genes, one TRα gene, one TRβ gene, and two TRIP11 genes were identified in 392 

the B. jamesi genome, indicating the presence of endogenous TH in this deep-sea 393 

organism. Whereas, only a single gene encoding TPO and TRIP11 was identified in 394 

the A. vulgare genome, with the lack of TRα and TRβ.  395 

In addition to the thyroid hormone signaling, the insulin signaling is also 396 

important for growth and development. A set of common genes involved in the insulin 397 

signaling pathway were identified to be tightly associated with the body size of 398 

mammals (Bouwman et al., 2018). In the B. jamesi genome, the insulin signaling 399 

pathway was also under significant enrichment of expanded gene families (p = 400 

0.0078). Insulin growth factor 2 (IGF2) is an essential peptide hormone of the insulin 401 
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signaling pathway (R. W. Li & Sperling, 2001), and a single IGF2-like gene was 402 

identified in both B. jamesi and A. vulgare. Whereas, some other genes related to the 403 

insulin signaling were significantly expanded in the B. jamesi genome in contrast to A. 404 

vulgare, including insulin-like growth factor-binding protein (IGFBP) and insulin 405 

enhancer protein (ISL). IGFs are normally bound to IGFBPs in great affinities that 406 

higher than IGF receptors (IR), and function as modulators of IGF availability and 407 

activity (Hwa, Oh, & Rosenfeld, 1999). A total of fourteen IGFBP genes were 408 

identified in the B. jamesi genome, which was significantly more than that of A. 409 

vulgare (four copies). In contrast, the number of genes encoding IR was similar in the 410 

two isopod genomes (seven and five members in B. jamesi and A. vulgare 411 

respectively). ISL is a LIM-homeodomain transcription factor that involved in insulin 412 

secretion and metabolic, and also mediates glycolysis (Guo et al., 2021). Seven ISL 413 

genes were tandemly located in the genome of B. jamesi, while only one ISL gene 414 

was identified in the A. vulgare genome. These results indicated that the key genes of 415 

the growth-related hormone signaling have been significantly replicated and expanded 416 

in the B. jamesi genome, which might be associated with its large body size. 417 

3.5 | Gene families related to deep-sea adaptation 418 

To adapt to the deep-sea oligotrophic environments, the mechanisms of food 419 

storage and utilization of giant isopods should under strong selective pressure. In 420 

accordance, giant isopods have developed a huge stomach to store food and have an 421 

extraordinary long hunger strike (> 5 years) (Fig. 1B) (Ginn et al., 2014). 422 

In order to identify potential genes related the nutrient storage, absorption and 423 
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utilization, RNA-seq sequencing and analysis were performed on various tissues of B. 424 

jamesi. A total of 901 genes were identified to be specifically highly expressed in 425 

digestive organs, including stomach and intestine. Functional enrichment analysis of 426 

these differentially expressed genes indicated that they were enriched in the pathways 427 

of mismatch repair, insulin signaling and resistance, endocytosis, glycolysis, and so 428 

on (Fig. 4A). Glycolysis is an important metabolic process in which glucose is broken 429 

down to produce energy. The genes involved in the glycolysis pathway were mostly 430 

highly expressed in stomach, intestine and muscle (Fig. 4B). Among them, 431 

phosphoglucomutase-2 (PGM2) is a transferase that plays an important role in 432 

carbohydrate metabolism of both glycogenolysis and glyconeogenesis (Morava, 2014). 433 

Seven genes encoding PGM2 were identified in the B. jamesi genome, whereas only 434 

one PGM2 gene was identified in the A. vulgare genome. Besides, these genes were 435 

tandem duplicated on scaffold281 and scaffold7261, and mostly high-expressed in 436 

stomach and intestine. Similar results were also identified in the genes encoding 437 

acetyl-CoA synthetase (ACSS1_2) and alcohol dehydrogenase (ADH), both of which 438 

participate in TCA cycle for ATP production. A total of five ACSS1_2 and 21 ADH 439 

were identified in the B. jamesi genome, which were significantly more than that of A. 440 

vulgare (one ACSS1_2 and seven ADH), and these genes were also highly expressed 441 

in the stomach and intestine. Therefore, the glycolysis of B. jamesi might be 442 

strengthened, which should support sufficient energy for the activity of this species. 443 

Besides energy production, the molecule transportation is also important for the 444 

absorption and utilization of food. Vesicular transport is an important procedure of 445 
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transporting macromolecules through the membrane, which has been identified to be 446 

under strong natural selection in the deep-sea crustaceans (Yuan et al., 2020). 447 

Endocytosis is an essential process of the vesicular transport mechanisms, which 448 

actively transporting molecules into the cell by engulfing it with its membrane. The 449 

pathway of endocytosis were significantly enriched by differentially expressed genes 450 

(p = 0.0018), and a large number of them were specifically expressed in the stomach 451 

and intestine (Fig. 4C). Besides, some expanded gene families were identified to be 452 

involved in vesicular transport, and annexin B9 (AnxB9) was a representative one 453 

among them. AnxB9 is a functional protein that involved in the formation of 454 

multivesicular bodies and regulation of protein trafficking, and even stabilizing the 455 

endomembrane system during stress (Monika Tjota et al., 2011). A total of 53 genes 456 

encoding AnxB9 were identified in the B. jamesi genome, which were significantly 457 

more than that of A. vulgare (eight genes) and other crustaceans (seven genes on 458 

average). These AnxB9 genes were mostly tandem duplicated in the B. jamesi genome 459 

(Fig. 5), and some of them were highly expressed in the stomach, intestine and muscle. 460 

Therefore, the gene family expansion and their specific expression in digestive organs 461 

play an important role in the energy supply of giant isopod, and help these organisms 462 

adapt to the oligotrophic conditions of the deep-sea environments. 463 

 464 

4| CONCLUSIONS 465 

    A genome of a deep-sea giant isopod B. jamesi was successfully assembled, 466 

which is the first high-quality genome of aquatic isopods. Comparative genomic 467 
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analyses provided new insights into the evolution of genome size and body size of 468 

animals, and the adaptation mechanisms of the deep-sea extreme environments. The 469 

isopod genomes will shed lights on the migration and evolution history of the 470 

crustaceans inhabiting deep-sea, shallow water and land. Furthermore, the genomic 471 

resources also provide tools for broader studies on the ecology, evolution, and 472 

conservation of isopods. 473 
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Tables 695 

Table 1. Summary of genome assembly and characteristics of B. jamesi and other 696 

three crustaceans. 697 

Species B. jamesi A. vulgare L. vannamei E. sinensis 

Genome size (bp) 5,892,409,081 1,725,108,002 1,618,026,442 1,562,256,418 

Number of Contigs 22,827 52,740 50,304 12,722 

Contig N50 (bp) 587,279 38,359 57,650 26,045 

Contig N90 (bp) 108,712 18,318 14,641 2,670 

Genome GC percent% 37.28% 29.15% 35.68% 46.39% 

BUSCOs coverage (%) 94.80% 91.38% 94.00% 91.20% 

Repeat percentage (%) 85.32% 69.54% 49.39% 45.30% 

Gene number 23,221 19,051 25,572 28,033 

Gene average length (bp) 936 1259 1,546 1,078 

Exon number per gene 4.18 4.93 5.94 3.26 

Exon average length (bp) 223 181 260 330 

Intron average length (bp) 3,010 1,872 1,484 1,602 
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Table 2. Comparison of the repeats among four crustaceans. 712 

Repeats B. jamesi A. vulgare L. vannamei E. sinensis 

Total length 5.90 Gb 1.73 Gb 1.66 Gb 1.56 Gb 

Repeats 85.32% 69.54% 49.39% 35.57% 

DNA 35.99% 7.08% 9.33% 2.30% 

DNA/En-Spm 3.28% 0.00% 6.39% 0.82% 

DNA/Maverick 5.08% 0.63% 0.80% 0.10% 

DNA/Merlin 0.37% 0.28% 0.00% 0.01% 

DNA/TcMar-Mariner 0.87% 0.21% 0.06% 0.00% 

DNA/TcMar-Tc1 6.05% 1.23% 0.03% 0.02% 

DNA/hAT-Ac 1.41% 2.18% 0.00% 0.11% 

DNA/hAT-Charlie 1.04% 0.11% 1.00% 0.09% 

DNA/hAT-hATm 5.77% 0.81% 0.00% 0.00% 

DNA/hAT-Tip100 2.67% 0.36% 0.00% 0.00% 

LINE 19.36% 20.24% 2.82% 9.72% 

LINE/CR1 9.13% 14.46% 0.25% 4.06% 

LINE/Jockey 1.06% 0.63% 0.06% 0.05% 

LINE/L2 1.80% 0.62% 0.35% 0.36% 

LINE/Penelope 3.61% 1.26% 0.45% 0.04% 

LINE/RTE-BovB 0.62% 3.00% 0.77% 0.91% 

SINE 1.00% 0.00% 0.06% 0.29% 

LTR 5.95% 5.89% 0.62% 1.79% 

LTR/ERV1 0.24% 0.00% 0.02% 0.01% 

LTR/Pao 2.48% 2.32% 0.00% 0.19% 

LTR/Gypsy 2.76% 3.22% 0.22% 1.28% 

Unknown 21.97% 14.87% 3.42% 10.39% 

Satellite 0.31% 0.00% 0.10% 0.00% 

Simple repeat 0.65% 18.08% 23.93% 6.90% 

Low complexity 0.01% 3.57% 9.49% 2.04% 
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Figures 727 

Fig. 1. The distributions and phenotypes of isopods. (A) The distributions of 728 

various isopods from the land to deep-sea environments. (B) The morphology of the 729 

giant isopod, B. jamesi. 730 

Fig. 2. The evolution of transposable elements (TEs) and genome size. (A) The 731 

relationship between the genome size and repeat content. The repeat contents and 732 

genome sizes of the sequenced crustacean genomes were summarized in the 733 

supplementary Table S2. The TE content and the genome size was positively 734 

correlated with the Pearson correlation r = 0.68 and p-value = 0.00275. (B) Kimura 735 

distance-based copy divergence analyses of TEs in the two isopod genomes, B. jamesi 736 

and A. vulgare. The graphs represent genome coverage for each TE superfamily in the 737 

different genomes analyzed. Clustering was performed according to their Kimura 738 

distances (K-value from 0 to 50). (C) Phylogenetic tree of the CR1 LINEs from B. 739 

jamesi (yellow) and A. vulgare (dark gray). (D) Enrichment analyses of TE families 740 

within gene promoters. The closest TE was calculated for each gene, and the content 741 

of the closest TEs were calculated and compared with that of the whole genome. 742 

Fig. 3. Comparative genomes analyses of B. jamesi and its relatives. (A) 743 

Phylogenetic tree and divergence times of B. jamesi and other arthropods. The 744 

number of significantly expanded (+, green) and contracted (−, red) gene families is 745 

designated on each branch. (B) Number of gene families shared among four 746 

Malacostraca species shown as a Venn diagram. (C) KEGG enrichment analysis of 747 

the expanded gene families of B. jamesi. The enrichment analysis was performed by 748 

using the toolkit from Omicshare (https://www.omicshare.com/). The enriched KEGG 749 

terms was referred to the supplementary Fig. S6. 750 

Fig. 4. The differential gene expressions in six tissues of B. jamesi. (A) KEGG 751 

enrichment analysis of the highly expressed genes in stomach and intestine. The top 752 

20 significantly enriched KEGG terms were displayed in the plot. (B) Expression 753 

level of the genes involved in the glycolysis of B. jamesi. (C) Expression level of the 754 

genes involved in the endocytosis of B. jamesi. 755 

Fig. 5. Phylogenetic tree of the genes encoding AnxB9. The AnxB9 genes from 756 

various crustaceans were used for the tree construction, which labeled in various 757 

colors. A cluster of AnxB9 genes was specific expanded in the B. jamesi genome 758 

(gray background), and these genes were tandem duplicated in the genome. The 759 

circles with different colors indicate the genes located on different scaffolds. 760 
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 782 

Fig. 1. The distributions and phenotypes of isopods. (A) The distributions of 783 

various isopods from the land to deep-sea environments. (B) The morphology of the 784 

giant isopod, B. jamesi. 785 
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 790 

Fig. 2. The evolution of transposable elements (TEs) and genome size. (A) The 791 

relationship between the genome size and repeat content. The repeat contents and 792 

genome sizes of the sequenced crustacean genomes were summarized in the 793 

supplementary Table S2. The TE content and the genome size was positively 794 

correlated with the Pearson correlation r = 0.68 and p-value = 0.00275. (B) Kimura 795 

distance-based copy divergence analyses of TEs in the two isopod genomes, B. jamesi 796 

and A. vulgare. The graphs represent genome coverage for each TE superfamily in the 797 

different genomes analyzed. Clustering was performed according to their Kimura 798 

distances (K-value from 0 to 50). (C) Phylogenetic tree of the CR1 LINEs from B. 799 

jamesi (yellow) and A. vulgare (dark gray). (D) Enrichment analyses of TE families 800 

within gene promoters. The closest TE was calculated for each gene, and the content 801 

of the closest TEs were calculated and compared with that of the whole genome. 802 
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 805 
Fig. 3. Comparative genomes analyses of B. jamesi and its relatives. (A) 806 

Phylogenetic tree and divergence times of B. jamesi and other arthropods. The 807 

number of significantly expanded (+, green) and contracted (−, red) gene families is 808 

designated on each branch. (B) Number of gene families shared among four 809 

Malacostraca species shown as a Venn diagram. (C) KEGG enrichment analysis of 810 

the expanded gene families of B. jamesi. The enrichment analysis was performed by 811 

using the toolkit from Omicshare (https://www.omicshare.com/). The enriched KEGG 812 

terms was referred to the supplementary Fig. S6. 813 
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 820 

Fig. 4. The differential gene expressions in six tissues of B. jamesi. (A) KEGG 821 

enrichment analysis of the highly expressed genes in stomach and intestine. The top 822 

20 significantly enriched KEGG terms were displayed in the plot. (B) Expression 823 

level of the genes involved in the glycolysis of B. jamesi. (C) Expression level of the 824 

genes involved in the endocytosis of B. jamesi. 825 
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 830 

Fig. 5. Phylogenetic tree of the genes encoding AnxB9. The AnxB9 genes from 831 

various crustaceans were used for the tree construction, which labeled in various 832 

colors. A cluster of AnxB9 genes was specific expanded in the B. jamesi genome 833 

(gray background), and these genes were tandem duplicated in the genome. The 834 

circles with different colors indicate the genes located on different scaffolds. 835 
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