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Abstract The primal-dual hybrid gradient (PDHG) algorithm has been applied for solving lin-
early constrained convex problems. However, it was shown that without some additional assump-
tions, convergence may fail. In this work, we propose a new competitive prediction-correction
primal-dual hybrid gradient algorithm to solve this kind of problem. Under some conditions,
we prove the global convergence for the proposed algorithm with the rate of O(1/N) in a non-
ergodic sense. Comparative performance analysis of our proposed approach with other related
methods on some matrix completion and wavelet-based image inpainting test problems shows
the outperformance of our approach, in terms of iteration number and CPU time.

Keywords Prediction-correction method · Convex minimization · linear constraints

1 Introduction

We consider the convex minimization problem with linear constraints

min{f(x) | Ax = b}, (1)

where f : Rn → R is a continuous convex (but not necessarily smooth) function; A ∈ Rm×n,
and b ∈ Rm are given matrix and vector, respectively and we assume the solution set of (1) is
nonempty. The convex problems with linear constraints have wide applications in many areas
such as compressed sensing, image processing, data mining, in particular, basis pursuit [26,9],
TV-based models [20,25,30], and matrix completion [4,24].
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The Lagrangian function corresponding to the problem (1) is defined as

L(x, y) = f(x)− yT (Ax− b),

where y ∈ Rm is a Lagrangian multiplier. One of the classical approaches for solving (1) is the
augmented Lagrangian method (ALM) or the method of multipliers, introduced by Hestenes [19]
and Powell [27]. ALM has an essential role from both theoretical and algorithmic points of view,
and the main idea of it, is minimizing the penalized Lagrangian function L(x, yk) + τ

2∥Ax− b∥2,
where τ > 0 is the penalty parameter and then applying a gradient ascent step on the dual
variable. The ALM is defined by the following steps xk+1 = argmin

x
{L(x, yk) + τ

2
∥Ax− b∥2}, (2a)

yk+1 = yk − τ(Axk+1 − b). (2b)

In [29], ALM was signified as the proximal point algorithm (PPA) applied to the dual problem
of (1) and its global convergence was investigated under certain assumptions. For the first time,
the PPA algorithm was introduced by Martinet [21], and further developed by Rockafellar [29].
Thereafter, many works have been published to modify the classical PPA for convex optimization
problems, equilibrium problems, and nonlinear operator problems (for example see [14,16,31,33,
35] and references therein). The proximal operator of the function f(x) is defined by

proxδf (p) = argmin
x

{f(x) + 1

2δ
∥x− p∥2}, (3)

in which δ > 0 is a constant. In this work, we presume that the proximal operator of the
function f(x) is simple to evaluate in the sense that it has a closed-form representation or
can be efficiently solved. This property is confirmed by several practical interesting applications
such as imaging restoration, matrix completion, and sparse signal reconstruction. For instance,
when f(x) denotes the l1-norm of vector x, the closed-form solution of (3) is x∗ = Tδ(p), where
Tδ(p) = sign(p)max(|p|− δ, 0) is the soft-shrinkage operator; and when f(X) is the nuclear norm
of matrix X, the closed-form solution is as follows:

Dδ(P ) = argmin
X

{∥X∥∗ +
1

2δ
∥X − P∥2F },

in which Dδ is the soft-thresholding operator [2] defined by:

Dδ(X) := UDδ(Σ)V T , Dδ(Σ) = diag(max{σi − δ, 0}),

where X = UΣV T ; the singular value decomposition (SVD) of X (for more examples, see [26]
and references therein). It has been used of such special structures in the primal-dual hybrid
gradient (PDHG) algorithm, which is very helpful in the algorithmic design of PDHG.

The PDHG approach [37] that was first applied for saddle point form of (1), is as follows
xk+1 = argmin

x
{L(x, yk) + r

2
∥x− xk∥2}, (4a)

yk+1 = yk − 1

s
(Axk+1 − b), (4b)

where r, s > 0. We can easily see that PDHG is a combination of the classical proximal point
algorithm with the Lagrangian function. Notice that the subproblem (4a) is easy to compute
at each iteration under the assumption (3) because it estimates the proximal operator of f(.).
The PDHG has been proved to be efficient for saddle point problems that have arisen in a lot of
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image processing applications [1,5,10,36] and is effective if the parameters r, s > 0 and satisfy
rs > ∥ATA∥ [37]. However, it was shown that (4a)-(4b) is may not be convergent if no additional
assumptions are applied on the model (see [17] and a counterexample therein). Recently, many
works have been extended to achieve convergent PDHG algorithms. Additional suppositions,
such as strong convexity for the objective function and applying some conditions to restricting
step sizes, could be used to settle this issue. Another option to obtain a convergent PDHG type
is to modify the algorithm with some determined steps (for several PDHG variants in imaging
processing, see [1,5,6,8,11,13,15,18]).

It is remarkable that assumption (3) has been widely utilized in PPA for solving the problem
(1). He et al. designed a customized proximal point algorithm for (1) in [16]. They demonstrated
that using a proper measure in the PPA, the outcoming subproblem estimates (3).

A linearized augmented Lagrangian multiplier (LALM) approach has been presented in [34],
based on the idea of adding a proximal term to the quadratic penalty term of the augmented
Lagrangian (2a), (for a relationship between these algorithms see [7,10]). We remark that the
convergence requirement for these primal-dual algorithms is rs > ∥ATA∥. On the other hand,
as stated in [11], the PDHG’s effectiveness strongly depends on the parameters used, and how
to choose appropriate step sizes is a critical issue. Algorithmically, convergence would be slow
when the values of r and s are large. Because in this situation, the proximal term of (4a) has
a substantial weight in the objective function and step sizes could be smaller. As a result, for
guaranteeing the convergence, it is preferred to choose as small values of r and s as possible. In
fact, the values of r and s are recommended to be selected larger than but very close to ∥ATA∥,
as experimentally applied in many cases (we refer the readers to [3,11,36] for more numerical
examples).

In order to enlarge the step sizes, Ma et al. [23] showed that the convergence condition of
PDHG variants can be relaxed by rs > a ∥ATA∥ (0 < a < 1). They combined the first PDHG
with a correction process and introduced a prediction-correction-based PDHG (PC-PDHG) al-
gorithm as follows:

Input: Choose r, s > 0 satisfying the rs > 1
4∥A

TA∥.

Initialization: (x0, y0) ∈ Ω.

Prediction: 
x̃k = argmin

x

{
L(x, yk) + r

2
∥x− xk∥2

}
, (5a)

ỹk = yk − 1

s
(Ax̃k − b). (5b)

Correction: 
xk+1 = x̃k − 1

2r
AT
(
yk − ỹk

)
, (5c)

yk+1 = yk − 1

s

(
A
(
xk+1 +

1

2
(x̃k − xk)

)
− b

)
. (5d)

Here, we present a new PDHG variant approach that works much superior to existing al-
gorithms with appropriate selecting of its parameters. We can adjust the parameters of the
proposed method so that more iterations would not need comparing of other similar algorithms.
The proposed scheme first makes a prediction using the PDHG and then in the correction proce-
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dure uses two matrix-vector computations to generate a new iteration. The method utilizes more
previous iterative information than PDHG using information from the most recent iterations.
The proposed method is presented below.

New prediction-correction-based primal-dual hybrid gradient (NPC-PDHG) method:

Input: Choose r, s > 0 and α, β, w1 and w2 satisfying the following conditions:

1 + αw1 > 0, (6a)

w1 + w2

2
+ αw1(2− w2) = 0, (6b)

(2rs)(1 + αw1)(1 + βw2 − w2) > (1− w1)(1− w2)
(
2αw1 +

1

2

)
∥AAT ∥. (6c)

1− αw1 > 0, (7a)

w1 + w2

2
− αw1(2− w2) = 0, (7b)

(2rs)(1− αw1)(1− βw2 + w2) >
[
w2(1− w1)(1− αw1) +

(1 + w1)
2

2

]
∥AAT ∥. (7c)

Initialization: (x0, y0) ∈ Ω.

Prediction: 
x̃k = argmin

x

{
L(x, yk) + r

2
∥x− xk∥2

}
, (8a)

ỹk = yk − 1

s
(Ax̃k − b). (8b)

Correction:
xk+1 = x̃k − (1− ω1)

2r
AT
(
yk − ỹk

)
− αω1(x

k − x̃k), (8c)

yk+1 = yk − (1− ω2)

s

(
A
(
xk+1 +

1

2
(x̃k − xk)

)
− b

)
− βω2(y

k − ỹk). (8d)

With a special choice of parameters, our scheme covers some existing methods. For example,
if we set w1 = w2 = 0 the NPC-PDHG method is reduced to PC-PDHG of [23].

The rest of this paper is laid out as follows. Preliminaries are provided in Section 2. In
Section 3, we show that the NPC-PDHG method is globally convergent with the O(1/N) rate,
in a nonergodic sense. In Section 4, we extend our method to a more general convex problem.
Section 5 then presents the computational experiments. Finally, in Section 6, we wrap up our
study.

2 Preliminaries

In this section, we define the optimality conditions of (1) as a variational inequality (VI). This
VI understanding will pave the way for our upcoming convergence analysis. Solving (1) is equal
to identifying a saddle point of L, based on our assumption of (1). Let (x∗, y∗) be a saddle point
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of L. We’ve got

L
y∈Rm

(x∗, y) ≤ L(x∗, y∗) ≤ L
x∈Rn

(x, y∗). (9)

Then, using variational characterization, we could read off the optimality conditions directly.
Finding a saddle point of (9) is equivalent to solving the following mixed variational inequality:

f(x)− f(x∗) + (v − v∗)TJ(v∗) ≥ 0, ∀v ∈ Ω, (10a)

with

v :=

(
x
y

)
, J(v) :=

(
−AT y
Ax− b

)
, (10b)

and

Ω = Rn × Rm, (10c)

Here, we denote (10a)-(10c) by V I(Ω, J). The notations vk := (xk, yk)T and ṽk := (x̃k, ỹk)T are
thus obvious from the context.

It’s worth noting that if

(J(v)− J(ṽ))T (v − ṽ) ≥ 0, ∀v, ṽ ∈ Ω, (11)

then the mapping J(.) is said to be monotone with respect to Ω. As a result, it’s simple to see
that J(v) in (10b) is monotone. The solution set of V I(Ω, J), denoted by Ω∗, is also nonempty
under the nonempty assumption on the solution set of (1).

Now we will go through how a variational inequality can be used to characterize the optimality
condition of an optimization model.

Proposition 1 [23] Let f(x), h(x) : Rn → R be convex functions. In addition, h(x) is dif-
ferentiable. We assume that the solution set of the minimization problem min{f(x) + h(x)} is
nonempty. Then,

x∗ = argmin{f(x) + h(x)},

if and only if

f(x)− f(x∗) + (x− x∗)T∇h(x∗) ≥ 0, ∀x ∈ Rn.

In the following lemma, we obtain the conditions for positive definiteness of a matrix with a
special structure that repetitively appears in the next section for our convergence analysis.

Lemma 1 Let the matrix Z has the following structure:

Z =

(
aI bAT

cA dI + eAAT

)
,

where the parameters a, b, c, d and e are real scalars and satisfying

a > 0, (12a)

b = c, (12b)

ad > (bc− ae)∥AAT ∥, (12c)

then the matrix Z is symmetric positive definite.

Proof We know Z is positive definite if and only if Z11 and Z22−Z21Z
−1
11 Z12 (that is Schur comple-

ment of Z11), are positive definite matrices, thus from conditions (12a)-(12c) Z is straightly sym-
metric positive definite. □
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3 Convergence analysis

In this section, we establish some lemmas to prove the global convergence of the sequence {vk}
generated by (8a)-(8d). For this purpose, we begin with the difference between the point ṽk and
a solution point of V I(Ω, J) quantified in the following lemma.

Lemma 2 Let {vk} and {ṽk} be generated by the NPC-PDHG algorithm. Then

ṽk ∈ Ω, f(x)− f(x̃k) + (v − ṽk)TJ(ṽk) ≥ (v − ṽk)TQ(vk − ṽk), ∀v ∈ Ω, (13)

in which Q is defined by

Q =

[
rI AT

0 sI

]
. (14)

Proof According to Proposition 1, the first-order optimality condition for the x−subproblem (8a)
can be expressed as the following

f(x)− f(x̃k) + (x− x̃k)T {−AT yk + r(x̃k − xk)} ≥ 0, ∀x ∈ Rn. (15)

In addition, the (8b) can be written as

Ax̃k − b+ s(ỹk − yk) = 0.

It can be further expressed as

ỹk ∈ Rm, (y − ỹk)T {Ax̃k − b+ s(ỹk − yk)} ≥ 0, ∀y ∈ Rm. (16)

From (15) and (16), we have

ṽk ∈ Ω, f(x)− f(x̃k)

+

(
x− x̃k

y − ỹk

)T
{(

−AT ỹk

Ax̃k − b

)
−
(

rI AT

0 sI

)(
xk − x̃k

yk − ỹk

)}
≥ 0, ∀v ∈ Ω.

The proof is complete. □

Lemma 3 Let {vk} and {ṽk} be generated by the NPC-PDHG algorithm. Then

vk+1 = vk −M(vk − ṽk), (17)

where M is defined by:

M =

[
(1 + αω1)I

(1−ω1)
2r AT

(1−ω2)
s (αω1 − 1

2 )A (1− ω2 + βω2)I − (1−ω1)(1−ω2)
2rs AAT

]
. (18)

Proof It follows from (8c) that

xk+1 = xk − (1 + αw1)(x
k − x̃k)−

(1− w1

2r

)
AT (yk − ỹk). (19)

For the term of (8d), we have

yk+1 = yk +
(1− w2

2s

)
A(xk − x̃k)− βw2(y

k − ỹk)−
(1− w2

s

)
(Axk+1 − b)

= yk +
(1− w2

2s

)
A(xk − x̃k)− βw2(y

k − ỹk)

−
(1− w2

s

)[
(Ax̃k − b)−A(x̃k − xk+1)

]
. (20)
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Note that from (8b), we get

Ax̃k − b = s(yk − ỹk), (21)

and from (8c), we obtain

x̃k − xk+1 =
(1− w1

2r

)
AT (yk − ỹk)− αw1(x

k − x̃k), (22)

Substituting (21) and (22) into (20), we get

yk+1 = yk +
(1− w2

s

)(1
2
− αw1

)
A (xk − x̃k)

−

[
(1− w2 + βw2)I −

(1− w1)(1− w2)

2rs
AAT

]
(yk − ỹk). (23)

From (19) and (23), we have(
xk+1

yk+1

)
=

(
xk

yk

)
−(

(1 + αω1)I
(1−ω1)

2r AT

(1−ω2)
s (αω1 − 1

2 )A (1− ω2 + βω2)I − (1−ω1)(1−ω2)
2rs AAT

)(
xk − x̃k

yk − ỹk

)
.

The assertation (17) is proved. □

For the matrices Q and M defined in (14) and (18), if there exists a positive definite matrix
H such that Q = HM , then by using (17), we can rewrite the right-hand side of (13) as

(v − ṽk)TQ(vk − ṽk) = (v − ṽk)TH(vk − vk+1). (24)

In the following, we show that the matrix

H = QM−1 (25)

is a symmetric positive definite matrix and also easily seen that Q = HM .

Lemma 4 For any r, s > 0 and α, β, w1 and w2 satisfying (6a)-(6c), the matrix H defined in
(25) is positive definite.

Proof For the matrix Q defined by (14), we have

Q−1 =

(
1
r I − 1

rsA
T

0 1
sI

)
.

Thus, it follows from (18) and (25) that

H−1 = MQ−1 =

(
(1+αw1)

r I, − 1
rs

(
1
2 + w1

2 + αw1

)
AT

(1−w2)(αw1− 1
2 )

rs A, (1−w2+βw2)
s I − w1(1−w2)(α− 1

2 )

rs2 AAT

)
.

According to Lemma 1 and structure of H−1 above, it is clear that conditions (6a)-(6c) are equiv-
alent to conditions (12a)-(12c) and thus H−1 is symmetric positive definite. The positive definite-
ness of H is followed directly. □
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Notice that we do not need to calculate the matrix H directly. Substituting (24) into (13)
and using the monotonicity of J , (11), we get

ṽk ∈ Ω, f(x)− f(x̃k) + (v − ṽk)TJ(v) ≥ (v − ṽk)TH(vk − vk+1), ∀v ∈ Ω. (26)

In the following lemma we obtain an equivalent statement for the right-hand side of (26) in terms
of ∥v − vk∥H and ∥v − vk+1∥H , where the norm ∥.∥2Z for the symmetric positive definite matrix
Z is defined as ∥v∥2Z = vTZv.

Lemma 5 Let {vk} and {ṽk} be generated by the NPC-PDHG algorithm. Then, we have

(v − ṽk)TH(vk − vk+1) =
1

2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
+

1

2
∥vk − ṽk∥2G, ∀v ∈ Ω, (27)

and the matrix G is defined as follows:

G = QT +Q−MTHM.

Proof Applying the identity

(a− b)TH(c− d) =
1

2

(
∥a− d∥2H − ∥a− c∥2H

)
+

1

2

(
∥c− b∥2H − ∥d− b∥2H

)
.

to the right term of (26) with a = v, b = ṽk, c = vk and d = vk+1, we get

(v − ṽk)TH(vk − vk+1) =
1

2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
+

1

2

(
∥vk − ṽk∥2H − ∥vk+1 − ṽk∥2H

)
. (28)

For the last term of (28), by using (17) and (25), we can write

∥vk − ṽk∥2H − ∥vk+1 − ṽk∥2H
= ∥vk − ṽk∥2H − ∥(vk − ṽk)− (vk − vk+1)∥2H
= ∥vk − ṽk∥2H − ∥(vk − ṽk)−M(vk − ṽk)∥2H
= 2(vk − ṽk)THM(vk − ṽk)− (vk − ṽk)TMTHM(vk − ṽk)

= (vk − ṽk)T
(
QT +Q−MTHM

)
(vk − ṽk).

The allegation is proved. □

Now, we form the matrix G. From (25), we have

G = (QT +Q)−MTQ

=

(
2rI AT

A 2sI

)
−

(
(1 + αω1)I

(1−ω2)
s (αω1 − 1

2 )A
T

(1−ω1)
2r A (1− ω2 + βω2)I − (1−ω1)(1−ω2)

2rs AAT

)(
rI AT

0 sI

)
=

(
r(1− αω1)I

[
(1− ω2)(

1
2 − αω1)− αω1

]
AT

(1+ω1)
2 A s(1 + ω2 − βω2)I − ω2(1−ω1)

2r AAT

)
.

It is obvious that the matrix G has the same structure of Z in Lemma 1 and hence when r, s > 0
and the conditions (7a)-(7c) are satisfied, the matrix G is positive definite. The following theorem
proves the contraction property of the method.
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Theorem 1 Assume the conditions (6a)-(6c) and (7a)-(7c) hold and r, s > 0. Then, for any
v∗ = (x∗, y∗)T ∈ Ω, the sequence {vk} generated by NPC-PDHG algorithm, satisfies the following
inequality:

∥vk+1 − v∗∥2H ≤ ∥vk − v∗∥2H − ∥vk − ṽk∥2G.

Proof By combining (26) and (27), we get

ṽk ∈ Ω, f(x)− f(x̃k) + (v − ṽk)TJ(v)

≥ 1

2

(
∥v − vk+1∥2H − ∥v − vk∥2H

)
+

1

2
∥vk − ṽk∥2G, ∀v ∈ Ω. (29)

Setting v = v∗ in (29), we obtain

∥vk − v∗∥2H − ∥vk+1 − v∗∥2H ≥ ∥vk − ṽk∥2G + 2{f(x̃k)− f(x∗) + (ṽk − v∗)TJ(v∗)}.

Since ṽk ∈ Ω, because of the optimality of v∗ (10a), we get

f(x̃k)− f(x∗) + (ṽk − v∗)TJ(v∗) ≥ 0,

and then

∥vk − v∗∥2H − ∥vk+1 − v∗∥2H ≥ ∥vk − ṽk∥2G.

So the proof is complete. □

Now, according to the above results, the algorithm’s global convergence can be demonstrated.

Theorem 2 The sequence {vk} generated by the NPC-PDHG algorithm, converges to a solution
point in Ω∗.

Proof From Theorem 1 we obtain that {vk} is bounded and

lim
k→∞

∥vk − ṽk∥ = 0. (30)

Therefore, the sequence ṽk is also bounded, and there is at least one cluster point in it. Let v∞

be a cluster point of ṽk and ṽkj be the subsequence converging to v∞. From (13), we have

ṽk ∈ Ω, f(x)− f(x̃kj ) + (v − ṽkj )TJ(x̃kj ) ≥ (v − ṽkj )TQ(vkj − ṽkj ), ∀v ∈ Ω.

Utilizing the continuity of J and f , we get that v∞ is a solution of V I(Ω, J).
On the other hand, the subsequence {vkj} also converges to v∞, by using limj→∞ ṽkj = v∞

and (30). For any k > kj , we have

∥vk − v∞∥H ≤ ∥vkj − v∞∥H .

Consequently, the sequence {vk} converges to v∞, that is a solution of V I(Ω, J). The proof is
complete. □

Now, we can conclude the worst-case convergence with rate O(1/N) for the NPC-PDHG,
measured by iteration complexity. This result is given in the following theorem that its proof is
the same as in [23], thus omitted.
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Theorem 3 Let {vk} and {ṽk} be generated by NPC-PDHG. Then there exists a constant c0
such that

∥vN − vN+1∥2H ≤ 1

(N + 1)c0
∥v0 − v∗∥2H , ∀v∗ ∈ Ω∗,

where H is defined in (25).

Note that Ω∗ is closed and convex. Theorem 3 indicates that for any given ϵ > 0, to ensure
∥vk − vk+1∥2H ≤ ϵ, the NPC-PDHG algorithm needs at most [d2/c0ϵ] iterations, where d :=
inf{∥v − v∗∥H | v∗ ∈ Ω∗}. Recall that vk+1 is a solution of V I(Ω, J) if ∥vk − vk+1∥2H = 0.
Thus, a worst-case O(1/N) convergence rate in a nonergodic sense is established for the scheme
(8a)-(8d).

4 Extension to separable convex problem

In this section, we demonstrate that, without any major modifications, our algorithm can be
naturally extended to the separable convex problem as follows

min
x∈Rn

{f(x) + g(−Ax)}, (31)

where f : Rn → R and g : Rm → R are both closed convex functions with non-empty domains.
Note that the original PDHG is proposed for solving saddle point problems [5,10,15]. Here,

we also reformulate the problem (31) into a saddle point form by Fenchel duality [28]:

min
x∈Rn

max
y

{f(x)− yTAx− g∗(y)}, (32)

where g∗(.) is the conjugate function of g(.). Finding a saddle point of problem (32) can be
written as the following monotone variational inequality: find (x∗, y∗) such that

f(x) + g∗(y)− f(x∗)− g∗(y∗) + (v − v∗)TJ(v∗) ≥ 0, ∀v ∈ Ω,

with

v :=

(
x
y

)
, J(v) :=

(
−AT y
Ax

)
. (33)

Using (11), the operator J(.) is also monotone.
In a similar way, the primal-dual method presented in [37] for (32) is as follows


xk+1 = argmin

x

{
f(x)− (yk)TAx+

r

2
∥x− xk∥2

}
, (34a)

yk+1 = argmax
y

{
− g∗(y)− yTAxk+1 − s

2
∥y − yk∥2

}
. (34b)

We can now offer the new prediction-correction-based primal-dual hybrid gradient method
by setting the PDHG as a prediction step. It is as follows:
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New prediction-correction-based primal-dual hybrid gradient (NPC-PDHG) method for
(32):

Input: Choose r, s > 0 and α, β,w1 and w2 satisfying the conditions (6a)-(6c) and
(7a)-(7c).

Initialization: (x0, y0) ∈ Ω.

Prediction: 
x̃k = argmin

x

{
f(x)− (yk)TAx+

r

2
∥x− xk∥2

}
, (35a)

ỹk = argmax
y

{
− g∗(y)− yTAx̃k − s

2
∥y − yk∥2

}
. (35b)

Correction:
xk+1 = x̃k − (1− ω1)

2r
AT
(
yk − ỹk

)
− αω1(x

k − x̃k), (35c)

yk+1 = yk − (1− ω2)

s
A
(
xk+1 +

1

2
(x̃k − xk)

)
− βω2(y

k − ỹk). (35d)

The convergence analysis of the NPC-PDHG for the general model (32) is similar to the earlier
analysis for (1). The method (35) as a variational inequality in a prediction and correction type
is now briefly given.

The first-order optimality condition for the x-subproblem (35a), according to Proposition 1,
can be written as

f(x)− f(x̃k) + (x− x̃k)T {−AT yk + r(x̃k − xk)} ≥ 0, ∀x ∈ Rn.

And the (35b) can be expressed as

g∗(y)− g∗(ỹk) + (y − ỹk)T {Ax̃k + s(ỹk − yk)} ≥ 0, ∀y ∈ Rm.

From the above two relations we get

ũk ∈ Ω, f(x) + g∗(y)− f(x̃k)− g∗(ỹk)

+

(
x− x̃k

y − ỹk

)T
{(

−AT ỹk

Ax̃k

)
−
(

rI AT

0 sI

)(
xk − x̃k

yk − ỹk

)}
≥ 0, ∀v ∈ Ω.

Using the notations of J(v) and Q (see (33) and (14)), we obtain that {vk} and {ṽk} generated
by (35a)-(35d) are satisfied in:

f(x) + g∗(y)− f(x̃k)− g∗(ỹk) + (v − ṽk)TJ(ũk)

≥ (v − ṽk)TQ(vk − ṽk), ∀v ∈ Ω,

where Q is defined in (14).
Also, we can easily see that for {vk} and {ṽk} generated by (35a)-(35d), we have

vk+1 = vk −M(vk − ṽk),

where M is defined in (18).
Thus, all of the convergence analysis performed in Section 3 can be applied to the algorithm

in the same way. As a consequent, the sequence {vk} provided by (35a)-(35d) converges to a
solution of (32).
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5 Numerical experiments

This section is devoted to numerically evaluating the effectiveness of the NPC-PDHGmethod. We
implemented the method on two important problems. All experiments described in this section
have been performed in MATLAB R2020b environment on a windows 10 laptop with an Intel
2.40-GHz processor and 4-GB RAM.

5.1 Matrix completion problem

Matrix completion (MC) is a problem of considerable practical interest: the recovery of low-rank
matrix X from its incomplete observed entries and has many applications in computer vision,
statistics, signal processing, and machine learning. From a mathematical point of view, its convex
formulation is as follows

min ∥X∥∗
s.t. Xij = Mij , (i, j) ∈ Ω,

where ∥X∥∗ is the nuclear norm ofX, which is defined as ∥X∥∗ = trace(
√
XTX) =

min{m,n}∑
i=1

σi(X),

for the matrix X of size m×n; M denotes the unknown matrix with p available sampled entries;
Ω is a set of p pairs of indices. By considering A(X) = XΩ , where XΩ represents the known
entries of X, the MC model can be regarded as a specific example of (1). Since A is a projection
operator, we get ∥AAT ∥ = 1.

We use three schemes to test our method in the following; the LALM [34], the customized
proximal point algorithm (C-PPA) [16] and the PC-PDHG [23]. As previously stated, all of these
methods are based on estimating the proximal operator and do not need the solution of difficult
systems. As a result, they have the same ease of implementation.

In our experiments, we only consider random matrices the case m = n and generate two
random matrices M1 ∈ Rn×ra and M2 ∈ Rn×ra from i.i.d. standard Gaussian distribution and
then set the low-rank matrix M = M1M

T
2 . We sample uniformly at random p entries from M

and collect them in Ω. We denote by OS = p/dr the oversampling ratio, where dr = ra(2n− ra)
is the ”true dimensionality” or degree of freedom of a n × n matrix of rank ra. We define the
relative error of an approximation X by

RE =
∥XΩ −MΩ∥F

∥MΩ∥F
.

For all algorithms, we set the relative error tolerance to Tol = 10−5. The initial point in all of
the tests is (x0, y0) = (0, 0).

For all the tests, we tried different values of parameters involved in the algorithms and then
we use r = 0.008, s = 1.01/(1.84 r), w1 = −0.1, w2 = 0.1, α = 0 and β = 3.7 for the NPC-PDHG
algorithm and for other algorithms we set the same parameters that are reported to work well
in their main articles: [34], [16] and [23]. Namely we take τ = 1, β = 2.5/n for LALM, r = 0.008,
s = 1.01/2r for PC-PDHG and s = 1.01/r, γ = 1.6 for C-PPA.

Tables 1-3 show the comparisons of above methods with OS = 5, 10, 15, respectively. From
the numerical results of the tables, we found that the proposed NPC-PDHG outperforms other
algorithms in terms of iteration number and computational time. The plot of relative errors as
versus iteration and CPU time for four algorithms with n = 1000, ra = 10 and OS = 5, is shown
in Fig. 1 (in the logarithmic scale). For the other choices of n, the figure is similar to this case.
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Table 1 Comparison results of LALM, C-PPA, PC-PDHG, and NPC-PDHG (OS=5)

Problems LALM [34] C-PPA [16] PC-PDHG [23] NPC-PDHG
n ra Iter. RE Iter. RE Iter. RE Iter. RE
100 10 17 5.69e-06 21 5.57e-06 14 7.97e-06 7 8.60e-06
200 10 33 7.36e-06 36 8.05e-06 20 8.67e-06 13 7.81e-06
500 10 81 9.39e-06 62 9.15e-06 43 8.73e-06 29 8.78e-06
1000 10 188 9.67e-06 104 9.06e-06 75 9.26e-06 50 9.51e-06
1000 50 32 9.17e-06 52 9.16e-06 28 8.67e-06 19 9.62e-06
1000 100 14 9.45e-06 23 8.37e-06 12 3.89e-06 8 8.65e-06
3000 10 478 9.96e-06 270 8.36e-06 189 9.92e-06 120 9.77e-06
3000 50 90 8.74e-06 159 9.02e-06 89 9.65e-06 56 9.61e-06
3000 100 45 8.36e-06 103 7.78e-06 53 9.20e-06 34 9.91e-06

Table 2 Comparison results of LALM, C-PPA, PC-PDHG, and NPC-PDHG (OS=10)

Problems LALM [34] C-PPA [16] PC-PDHG [23] NPC-PDHG
n ra Iter. RE Iter. RE Iter. RE Iter. RE
200 10 11 3.11e-06 21 6.54e-06 7 8.51e-06 6 6.03e-06
500 10 39 8.75e-06 47 6.81e-06 25 9.37e-06 18 9.40e-06
1000 10 82 8.96e-06 75 9.42e-06 49 5.59e-06 34 9.18e-06
1000 50 10 6.85e-06 22 8.05e-06 8 8.38e-06 6 8.86e-06
3000 10 243 9.62e-06 216 2.57e-06 131 9.73e-06 86 9.91e-06
3000 50 47 9.81e-06 91 9.90e-06 40 9.49e-06 27 9.83e-06
3000 100 22 6.90e-06 46 7.92e-06 19 9.78e-06 13 9.25e-06

Table 3 Comparison results of LALM, C-PPA, PC-PDHG, and NPC-PDHG (OS=15)

Problems LALM [34] C-PPA [16] PC-PDHG [23] NPC-PDHG
n ra Iter. RE Iter. RE Iter. RE Iter. RE
300 10 10 4.83e-06 23 6.43e-06 7 7.52e-06 7 5.54e-06
500 10 25 5.20e-06 33 7.67e-06 17 8.13e-06 12 9.10e-06
1000 10 55 7.96e-06 61 9.60e-06 36 8.83e-06 25 9.77e-06
1000 30 13 7.56e-06 24 7.42e-06 8 5.13e-06 6 7.64e-06
3000 15 118 8.18e-06 145 9.70e-06 76 9.62e-06 49 9.79e-06
3000 50 32 5.03e-06 58 8.76e-06 25 9.48e-06 18 7.09e-06
3000 100 10 5.82e-06 26 8.34e-06 8 6.09e-06 9 6.58e-06

5.1.1 Image proccessing problem

Here, we reported the numerical results obtained for four algorithms on the wavelet-based image
reconstruction problem. First, we provide a brief description of the wavelet-based image inpaint-
ing background. Let x ∈ Rn be a digital image with n = n1 × n2, and W ∈ Rn×m be a wavelet
dictionary (the matrix whose columns are the elements of a wavelet frame, and in general nor-
malized to a unit l2-norm). The image x is often sparse under wavelet transform W and we have
x = Wx with x being a sparse vector (we refer to [32] for more details). Wavelet-based image
inpainting is an inverse problem that consists in finding an approximation of the original clean
image x based on some observation b which might have some convolutions or missing pixels, by
solving the following minimization problem

min ∥x∥1
s.t. BWx = b,

where the l1 norm in the objective function is to deduce a sparse representation under the wavelet
dictionary. The mask B ∈ Rl×n is a diagonal matrix with 0 and 1 diagonal elements and is a
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Fig. 1 Performance comparison of LALM, C-PPA, PC-PDHG, and NPC-PDHG algorithms. Relative error versus
iteration number (left) and relative error versus CPU time (right).

Fig. 2 From left to right: original Cameraman, degraded Cameraman, original Barbara, degraded Barbara

matrix representation of downsampling or blurry operators. The dictionary W has the property
WTW = I, hence ∥ATA∥ = ∥WTBTBW∥ = 1 (A := BW ).

In our performances, we consider the reflective boundary condition to create blurry images. In
this situation, the mask B can be written as B = SH, where S ∈ Rl×n is a binary downsampling
matrix in which the locations of 0 and 1 correspond to missing and known pixels of the image,
respectively, and H ∈ Rn×n is a blurry operator that can be diagonalized by the discrete cosine
transform (DCT) (for more details we refer to [12]). We use the inverse discrete Haar wavelet
transform with a level of 6 for the dictionary W . For the blurring effect, we utilize the out-of-
focus kernel with a radius of 7, using the functions fspecial and imfilter from the MATLAB
Image Processing Toolbox. Finally, we hide 50% of pixels by applying a mask operator S. The
locations of missing pixels are assigned randomly. Fig. 2 depicts the original and degraded images
of Barbara.png and Cameraman.tif (with the size of 256×256). For all the tests, we take r = 0.6,
s = 0.6, w1 = −0.1, w2 = 0.1, α = 0 and β = 3.7 for NPC-PDHG, r = 0.8, s = 0.7 for PC-
PDHG, r = 0.6, s = 1.7, γ = 1.9, for C-PPA and τ = 1, β = 2.5/n for LALM as suggested in [23,
16,34]. We set the initial point to be (x0, y0) = (WT (b), 0) and employed 500 iterations for each
algorithm. Fig. 3 shows the reconstructed images. The quality of the restoration is measured by
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LALM C-PPA PC-PDHG NPC-PDHG

Fig. 3 Restored images by the tested algorithms

the signal-to-noise ratio (SNR) in decibel (dB) that is defined by

SNR := 10 log10
∥x∥

∥x̄− x∥
, (36)

where x̄ is restored image and x is an original image. Fig. 5 depicts the NPC-PDHGmethod might
initially (for the small values of SNR) require a little more time than the C-PPA method, however,
the further we go, it needs less time to achieve the acceptable values of SNR for the restored
images compared to the other three algorithms. Also, Fig. 4 illustrates the outperformance of
the NPC-PDHG in terms of iteration number, for the aforementioned images. We constructed
these profiles based on SNR and both iteration number and CPU time for all the methods.

6 Conclusion

We presented a new PDHG variant method to solve the linearly constrained convex problem,
in this work. The algorithm tries to improve performance by a prediction-correction approach.
It first utilizes a prediction by the original PDHG and then updates the new iterate using
two correction stages. We established the global convergence of the method that requires the
parameters involved in the algorithm to satisfy (6a)-(6c) and (7a)-(7c). Then we concluded the
O(1/N) nonergodic convergence rate for the method. we showed that our proposed method can
be extended to separable convex minimization. Finally, we compared our method with three
related existing algorithms proposed in [16,34,23]. Numerical results showed the outperformance
of our algorithm than other algorithms, in terms of both iteration number and CPU time.
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Fig. 4 Performance comparison of LALM, C-PPA, PC-PDHG, and NPC-PDHG algorithms (SNR vs iteration
number) on images ’Cameraman’ (left) and ’Barbara’ (right).

Fig. 5 Performance comparison of LALM, C-PPA, PC-PDHG, and NPC-PDHG (SNR vs CPU time) algorithms
on images ’Cameraman’ (left) and ’Barbara’ (right).
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