References
1. Semenzato L, Er Emie Botton J, Er ^ Ome Drouin J, et al.: Chronic diseases, health conditions and risk of COVID-19-related hospitalization and in-hospital mortality during the first wave of the epidemic in France: a cohort study of 66 million people-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0. Lancet Reg Heal - Eur. 2021, 8:100158. 10.1016/j.lanepe.2021.100158
2. Williamson EJ, Walker AJ, Bhaskaran K, et al.: Factors associated with COVID-19-related death using OpenSAFELY. Nat 2020 5847821. 2020, 584:430–6. 10.1038/s41586-020-2521-4
3. Yang J, Zheng Y, Gou X, et al.: Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020, 94:91–5. 10.1016/J.IJID.2020.03.017
4. Reilev M, Kristensen KB, Pottegård A, et al.: Characteristics and predictors of hospitalization and death in the first 11 122 cases with a positive RT-PCR test for SARS-CoV-2 in Denmark: A nationwide cohort. Int J Epidemiol. 2020, 49:1468–81. 10.1093/ije/dyaa140
5. Hoffmann M, Kleine-Weber H, Schroeder S, et al.: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020, 181:271-280.e8. 10.1016/j.cell.2020.02.052
6. DR M, MM C, SC Y, et al.: Renin-angiotensin system blockers and susceptibility to COVID-19: an international, open science, cohort analysis. Lancet Digit Heal. 2021, 3:e98–114. 10.1016/S2589-7500(20)30289-2
7. IG A, S P, RM T, R K-D, AL J, M P: Cardiovascular drugs and COVID-19 clinical outcomes: A living systematic review and meta-analysis. Br J Clin Pharmacol. Published Online First: 2021. 10.1111/BCP.14927
8. G T, M M, R DC, et al.: Renin-Angiotensin-Aldosterone System Inhibitors and Risk of Death in Patients Hospitalised with COVID-19: A Retrospective Italian Cohort Study of 43,000 Patients. Drug Saf. 2020, 43:1297–308. 10.1007/S40264-020-00994-5
9. N M, P B-L, N T, P B, C D-P: NSAIDs and COVID-19: A Systematic Review and Meta-analysis. Drug Saf. 2021, 44:929–38. 10.1007/S40264-021-01089-5
10. TM D, CJ F, R P, et al.: Non-steroidal anti-inflammatory drug use and outcomes of COVID-19 in the ISARIC Clinical Characterisation Protocol UK cohort: a matched, prospective cohort study. Lancet Rheumatol. 2021, 3:e498–506. 10.1016/S2665-9913(21)00104-1
11. Khunti K, Knighton P, Zaccardi F, et al.: Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol. 2021, 9:293–303. 10.1016/S2213-8587(21)00050-4
12. Yang W, Sun X, Zhang J, Zhang K: The effect of metformin on mortality and severity in COVID-19 patients with diabetes mellitus. Diabetes Res Clin Pract. 2021, 178:108977. 10.1016/J.DIABRES.2021.108977
13. CT B, J B, L T, et al.: Outpatient metformin use is associated with reduced severity of COVID-19 disease in adults with overweight or obesity. J Med Virol. 2021, 93:4273–9. 10.1002/JMV.26873
14. Lalau JD, Al-Salameh A, Hadjadj S, et al.: Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab. 2021, 47:. 10.1016/j.diabet.2020.101216
15. Rakhmat II, Kusmala YY, Handayani DR, et al.: Dipeptidyl peptidase-4 (DPP-4) inhibitor and mortality in coronavirus disease 2019 (COVID-19) – A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr Clin Res Rev. 2021, 15:777–82. 10.1016/j.dsx.2021.03.027
16. Hariyanto TI, Kurniawan A: Dipeptidyl peptidase 4 (DPP4) inhibitor and outcome from coronavirus disease 2019 (COVID-19) in diabetic patients: a systematic review, meta-analysis, and meta-regression. J Diabetes Metab Disord. 2021, 20:543–50. 10.1007/s40200-021-00777-4
17. Asselta R, Paraboschi EM, Mantovani A, Duga S: ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy. Aging (Albany NY). 2020, 12:10087–98. 10.18632/aging.103415
18. Hou Y, Zhao J, Martin W, et al.: New insights into genetic susceptibility of COVID-19: An ACE2 and TMPRSS2 polymorphism analysis. BMC Med. 2020, 18:. 10.1186/s12916-020-01673-z
19. Ren L, Yu S, Xu W, Overton JL, Chiamvimonvat N, Thai PN: Lack of association of antihypertensive drugs with the risk and severity of COVID-19: A meta-analysis. J Cardiol. 2021, 77:482–91. 10.1016/J.JJCC.2020.10.015
20. J X, Y T, L S, et al.: The Effect of Prior Angiotensin-Converting Enzyme Inhibitor and Angiotensin Receptor Blocker Treatment on Coronavirus Disease 2019 (COVID-19) Susceptibility and Outcome: A Systematic Review and Meta-analysis. Clin Infect Dis. 2021, 72:E901–13. 10.1093/CID/CIAA1592
21. Yu B, Li C, Sun Y, Wang DW: Insulin Treatment Is Associated with Increased Mortality in Patients with COVID-19 and Type 2 Diabetes. Cell Metab. 2021, 33:65-77.e2. 10.1016/j.cmet.2020.11.014
22. Mendez SR, Frank RC, Stevenson EK, Chung M, Silverman MG: Dihydropyridine Calcium Channel Blockers and the Risk of Severe COVID-19. Chest. 2021, 160:89–93. 10.1016/j.chest.2021.01.073
23. Jackson BR, Gold JAW, Natarajan P, et al.: Predictors at Admission of Mechanical Ventilation and Death in an Observational Cohort of Adults Hospitalized With Coronavirus Disease 2019. Clin Infect Dis. 2020, 30329:4141–51. 10.1093/cid/ciaa1459
24. Yan H, Valdes AM, Vijay A, et al.: Role of Drugs Used for Chronic Disease Management on Susceptibility and Severity of COVID-19: A Large Case-Control Study. Clin Pharmacol Ther. 2020, 108:1185–94. 10.1002/cpt.2047
25. Chouchana L, Beeker N, Garcelon N, et al.: Association of Antihypertensive Agents with the Risk of In-Hospital Death in Patients with Covid-19. Cardiovasc Drugs Ther. 2021, 6–11. 10.1007/s10557-021-07155-5
26. Kow CS, Ramachandram DS, Hasan SS: Clinical outcomes of hypertensive patients with COVID-19 receiving calcium channel blockers: a systematic review and meta-analysis. Hypertens Res. Published Online First: 2021. 10.1038/s41440-021-00786-z
27. Dietl P, Haller T, Frick M: Spatio-temporal aspects, pathways and actions of Ca2+ in surfactant secreting pulmonary alveolar type II pneumocytes. Cell Calcium. 2012, 52:296–302. 10.1016/J.CECA.2012.04.010
28. Lodhi FAK, Shogren SL, Vedre JG, Haque N, Reriani M, Ali R: Calcium channel blocker toxicity causing acute respiratory distress syndrome: A commonly used drug triggering a life-threatening condition. Wis Med J. 2020, 119:66–8.
29. Alsagaff MY, Mulia EPB, Maghfirah I, et al.: Association of calcium channel blocker use with clinical outcome of COVID-19: A meta-analysis. Diabetes Metab Syndr Clin Res Rev. 2021, 15:. 10.1016/j.dsx.2021.102210
30. Magdalan J, Antończyk A, Kowalski K, Przewłocki M, Kochman K W-SM: Severe pulmonary complications of massive intoxication with calcium channel blockers and isosorbide mononitrate–a case report. Przegl Lek. 2004, 61:405–7.
31. Humbert VH, Munn NJ, Hawkins RF: Noncardiogenic Pulmonary Edema Complicating Massive Diltiazem Overdose. Chest. 1991, 99:258–9. 10.1378/CHEST.99.1.258
32. Marini JJ, Gattinoni L: Management of COVID-19 Respiratory Distress. JAMA. 2020, 323:2329–30. 10.1001/JAMA.2020.6825
33. Sweeney R Mac, McAuley DF: Acute respiratory distress syndrome. Lancet. 2016, 388:2416–30. 10.1016/S0140-6736(16)00578-X
34. Simonneau G, Escourrou P, Duroux P, Lockhart A: Inhibition of Hypoxic Pulmonary Vasoconstriction by Nifedipine. http://dx.doi.org/101056/NEJM198106253042606. 2010, 304:1582–5. 10.1056/NEJM198106253042606
35. Mishra A, Reed RM, Eberlein M: Severe, rapidly reversible hypoxemia in the early period after bilateral lung transplantation. Ann Am Thorac Soc. 2016, 13:979–85. 10.1513/ANNALSATS.201602-107CC/SUPPL_FILE/DISCLOSURES.PDF
36. D’elia JA, Weinrauch LA: Calcium ion channels: Roles in infection and sepsis mechanisms of calcium channel blocker benefits in immunocompromised patients at risk for infection. Int J Mol Sci. 2018, 19:1–17. 10.3390/ijms19092465
37. B C, J A: Conflicts over calcium and the treatment of COVID-19. Evol Med public Heal. 2020, 9:149–56. 10.1093/EMPH/EOAA046
38. Straus MR, Bidon MK, Tang T, Jaimes JA, Whittaker GR, Daniel S: Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections by Preventing Virus Entry and Spread. ACS Infect Dis. Published Online First: 2021. 10.1021/ACSINFECDIS.1C00023
39. Silva IVG, De Figueiredo RC, Rios DRA: Effect of different classes of antihypertensive drugs on endothelial function and inflammation. Int J Mol Sci. 2019, 20:5–9. 10.3390/ijms20143458
40. Moore N, Bosco-Levy P, Thurin N, Blin P, Droz-Perroteau C: Existe-t-il un effet protecteur de l’aspirine dans la COVID-19 ? Résultats d’une méta-analyse. Rev Epidemiol Sante Publique. 2021, 69:S109–10. 10.1016/J.RESPE.2021.05.041
41. M S, MG N, JH L, J S, H P, S Y: Effect of aspirin on coronavirus disease 2019: A nationwide case-control study in South Korea. Medicine (Baltimore). 2021, 100:e26670. 10.1097/MD.0000000000026670
42. Yeramaneni S, Doshi P, Sands K, Cooper M, Kurbegov D, Fromell G: Famotidine Use Is Not Associated With 30-day Mortality: A Coarsened Exact Match Study in 7158 Hospitalized Patients With Coronavirus Disease 2019 From a Large Healthcare System. Gastroenterology. 2021, 160:919-921.e3. 10.1053/J.GASTRO.2020.10.011
43. Ettman CK, Abdalla SM, Cohen GH, Sampson L, Vivier PM, Galea S: Prevalence of Depression Symptoms in US Adults Before and During the COVID-19 Pandemic. JAMA Netw Open. 2020, 3:e2019686–e2019686. 10.1001/JAMANETWORKOPEN.2020.19686
44. Hossain M, Tasnim S, Sultana A, et al.: Epidemiology of mental health problems in COVID-19: a review [version 1; peer review: 2 approved] report report. Published Online First: 2020. 10.12688/f1000research.24457.1
45. N Ş, R M, A M, H K, M K, T T: Association between chronic ACE inhibitor exposure and decreased odds of severe disease in patients with COVID-19. Anatol J Cardiol. 2020, 24:21–9. 10.14744/ANATOLJCARDIOL.2020.57431
46. Hossain MS, Tonmoy MIQ, Fariha A, et al.: Prediction of the Effects of Variants and Differential Expression of Key Host Genes ACE2, TMPRSS2, and FURIN in SARS-CoV-2 Pathogenesis: An In Silico Approach: https://doi.org/101177/11779322211054684. 2021, 15:. 10.1177/11779322211054684
47. Lanjanian H, Moazzam-Jazi M, Hedayati M, et al.: SARS-CoV-2 infection susceptibility influenced by ACE2 genetic polymorphisms: insights from Tehran Cardio-Metabolic Genetic Study. Sci Reports 2021 111. 2021, 11:1–13. 10.1038/s41598-020-80325-x
48. Choudhary S, M.D., Sreenivasulu K, et al.: Role of Genetic Variants and Gene Expression in the Susceptibility and Severity of COVID-19. Ann Lab Med. 2021, 41:129–38. 10.3343/ALM.2021.41.2.129
49. Curtis D: Variants in ACE2 and TMPRSS2 Genes Are Not Major Determinants of COVID-19 Severity in UK Biobank Subjects. Hum Hered. 2020, 85:66–8. 10.1159/000515200