References
Alexa, A., & Rahnenfuhrer, J. (2020). TOPGO: enrichment analysis for
gene ontology 2.40. 0. R package version, 2 (0), 2010.
Batz, Z. A., Goff, A. C., & Armbruster, P. A. (2017). MicroRNAs are
differentially abundant during Aedes albopictus diapause maintenance but
not diapause induction. Insect molecular biology, 26 (6), 721-733.
Biggar, K. K., & Storey, K. B. (2018). Functional impact of microRNA
regulation in models of extreme stress adaptation. Journal of
molecular cell biology, 10 (2), 93-101.
Chen, J., Liang, Z., Liang, Y., Pang, R., & Zhang, W. (2013). Conserved
microRNAs miR-8-5p and miR-2a-3p modulate chitin biosynthesis in
response to 20-hydroxyecdysone signaling in the brown planthopper,
Nilaparvata lugens. Insect biochemistry and molecular biology,
43 (9), 839-848.
Denlinger, D. (2002). Regulation of diapause. Annual review of
entomology, 47 (1), 93-122.
Denlinger, D. (2022). Insect diapause : Cambridge University
Press.
Denlinger, D., Yocum, G., & Rinehart, J. (2012). Hormonal control of
diapause. In Insect endocrinology (pp. 430-463): Elsevier.
Duan, T., Li, L., Tan, Y., Li, Y., & Pang, B. (2021). Identification
and functional analysis of microRNAs in the regulation of summer
diapause in Galeruca daurica. Comparative Biochemistry and
Physiology Part D: Genomics and Proteomics, 37 , 100786.
Duan, T. F., Li, L., Wang, H. C., & Pang, B. P. (2023). MicroRNA
miR‐2765‐3p regulates reproductive diapause by targeting FoxO in
Galeruca daurica. Insect Science, 30 (2), 279-292.
Enriquez, T., & Teets, N. M. (2023). Lipid Metabolism in Response to
Cold.
Forsberg, J., & Wiklund, C. (1988). Protandry in the green-veined white
butterfly, Pieris napi L.(Lepidoptera; Pieridae). Functional
Ecology , 81-88.
Friedländer, Chen, W., Adamidi, C., Maaskola, J., Einspanier, R.,
Knespel, S., & Rajewsky, N. (2008). Discovering microRNAs from deep
sequencing data using miRDeep. Nature biotechnology, 26 (4),
407-415.
Friedländer, Mackowiak, S. D., Li, N., Chen, W., & Rajewsky, N. (2012).
miRDeep2 accurately identifies known and hundreds of novel microRNA
genes in seven animal clades. Nucleic acids research, 40 (1),
37-52.
Fruciano, C., Franchini, P., & Jones, J. C. (2021). Capturing the
rapidly evolving study of adaptation. Journal of Evolutionary
Biology, 34 (6), 856-865.
Gawienowski, A. M., Kessler, L. J., Tan, B. S., & Yin, C.-M. (1987).
Glucocorticoid action on the growth and development of insects.Life sciences, 40 (17), 1725-1730.
Grossmann, S., Bauer, S., Robinson, P. N., & Vingron, M. (2007).
Improved detection of overrepresentation of Gene-Ontology annotations
with parent–child analysis. Bioinformatics, 23 (22), 3024-3031.
Gudmunds, E., Wheat, C. W., Khila, A., & Husby, A. (2022). Functional
genomic tools for emerging model species. Trends in Ecology &
Evolution .
Guerra-Assunção, J. A., & Enright, A. J. (2012). Large-scale analysis
of microRNA evolution. BMC genomics, 13 , 1-12.
He, K., Xiao, H., Sun, Y., Situ, G., Xi, Y., & Li, F. (2019).
microRNA-14 as an efficient suppressor to switch off ecdysone production
after ecdysis in insects. RNA biology, 16 (9), 1313-1325.
Ivanovic, J. (2018). Hormones and metabolism in insect stress :
CRC Press.
Jain, S., Rana, V., Tridibes, A., Sunil, S., & Bhatnagar, R. K. (2015).
Dynamic expression of miRNAs across immature and adult stages of the
malaria mosquito Anopheles stephensi. Parasites & vectors, 8 (1),
1-20.
Jin, X., Wu, X., Zhou, L., He, T., Yin, Q., & Liu, S. (2020).
20-Hydroxyecdysone-responsive microRNAs of insects. RNA biology,
17 (10), 1454-1471.
Kang, W., Eldfjell, Y., Fromm, B., Estivill, X., Biryukova, I., &
Friedländer, M. R. (2018). miRTrace reveals the organismal origins of
microRNA sequencing data. Genome biology, 19 (1), 1-15.
Kerr, G., Ruskin, H. J., Crane, M., & Doolan, P. (2008). Techniques for
clustering gene expression data. Computers in biology and
medicine, 38 (3), 283-293.
Koštál, V. (2006). Eco-physiological phases of insect diapause.Journal of insect physiology, 52 (2), 113-127.
Koštál, V., Šimůnková, P., Kobelková, A., & Shimada, K. (2009). Cell
cycle arrest as a hallmark of insect diapause: changes in gene
transcription during diapause induction in the drosophilid fly,
Chymomyza costata. Insect biochemistry and molecular biology,
39 (12), 875-883.
Koštál, V., Štětina, T., Poupardin, R., Korbelová, J., & Bruce, A. W.
(2017). Conceptual framework of the eco-physiological phases of insect
diapause development justified by transcriptomic profiling.Proceedings of the National Academy of Sciences, 114 (32),
8532-8537.
Koštál, V. r., Berková, P., & Šimek, P. (2003). Remodelling of membrane
phospholipids during transition to diapause and cold-acclimation in the
larvae of Chymomyza costata (Drosophilidae). Comparative
Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,
135 (3), 407-419.
Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase:
from microRNA sequences to function. Nucleic acids research,
47 (D1), D155-D162.
Kumar, L., & Futschik, M. E. (2007). Mfuzz: a software package for soft
clustering of microarray data. Bioinformation, 2 (1), 5.
Lees, E., & Archer, D. (1980). Diapause in various populations of
Pieris napi L. from different parts of the British Isles [Ecology,
genetics, photoperiodism]. Journal of Research on the
Lepidoptera .
Lehmann, P., Pruisscher, P., Koštál, V., Moos, M., Šimek, P., Nylin, S.,
. . . Wheat, C. W. (2018). Metabolome dynamics of diapause in the
butterfly Pieris napi: distinguishing maintenance, termination and
post-diapause phases. Journal of Experimental Biology, 221 (2),
jeb169508.
Lehmann, P., Pruisscher, P., Posledovich, D., Carlsson, M., Käkelä, R.,
Tang, P., . . . Gotthard, K. (2016). Energy and lipid metabolism during
direct and diapause development in a pierid butterfly. Journal of
Experimental Biology, 219 (19), 3049-3060.
Lehmann, P., Van Der Bijl, W., Nylin, S., Wheat, C. W., & Gotthard, K.
(2017). Timing of diapause termination in relation to variation in
winter climate. Physiological Entomology, 42 (3), 232-238.
Liu, Z., Ling, L., Xu, J., Zeng, B., Huang, Y., Shang, P., & Tan, A.
(2018). MicroRNA-14 regulates larval development time in Bombyx mori.Insect biochemistry and molecular biology, 93 , 57-65.
Lohse, K., Hayward, A., Ebdon, S., of Life, W. S. I. T., & Consortium,
D. T. o. L. (2021). The genome sequences of the male and female
green-veined white, Pieris napi (Linnaeus, 1758). Wellcome Open
Research, 6 .
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of
fold change and dispersion for RNA-seq data with DESeq2. Genome
biology, 15 (12), 1-21.
Lozano, J., Montañez, R., & Belles, X. (2015). MiR-2 family regulates
insect metamorphosis by controlling the juvenile hormone signaling
pathway. Proceedings of the National Academy of Sciences,
112 (12), 3740-3745.
Lucas, K. J., Zhao, B., Liu, S., & Raikhel, A. S. (2015). Regulation of
physiological processes by microRNAs in insects. Current opinion
in insect science, 11 , 1-7.
Marco, A., Hooks, K., & Griffiths-Jones, S. (2012). Evolution and
function of the extended miR-2 microRNA family. RNA biology,
9 (3), 242-248.
Meuti, M. E., Bautista-Jimenez, R., & Reynolds, J. A. (2018). Evidence
that microRNAs are part of the molecular toolkit regulating adult
reproductive diapause in the mosquito, Culex pipiens. PLoS One,
13 (11), e0203015.
Olena, A. F., & Patton, J. G. (2010). Genomic organization of
microRNAs. Journal of cellular physiology, 222 (3), 540-545.
Pruisscher, P., Lehmann, P., Nylin, S., Gotthard, K., & Wheat, C. W.
(2022). Extensive transcriptomic profiling of pupal diapause in a
butterfly reveals a dynamic phenotype. Molecular ecology, 31 (4),
1269-1280.
Pruisscher, P., Nylin, S., Wheat, C. W., & Gotthard, K. (2021). A
region of the sex chromosome associated with population differences in
diapause induction contains highly divergent alleles at clock genes.Evolution, 75 (2), 490-500.
Quah, S., Hui, J. H., & Holland, P. W. (2015). A burst of miRNA
innovation in the early evolution of butterflies and moths.Molecular biology and evolution, 32 (5), 1161-1174.
Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of
utilities for comparing genomic features. Bioinformatics (26),
841-842.
R Core Team, R. (2021). R: a language and environment for statistical
computing. R Foundation for Statistical Computing; 2020. In.
Ragland, G. J., Egan, S. P., Feder, J. L., Berlocher, S. H., & Hahn, D.
A. (2011). Developmental trajectories of gene expression reveal
candidates for diapause termination: a key life-history transition in
the apple maggot fly Rhagoletis pomonella. Journal of Experimental
Biology, 214 (23), 3948-3960.
Reynolds, J. A. (2019). Noncoding RNA regulation of dormant states in
evolutionarily diverse animals. The Biological Bulletin, 237 (2),
192-209.
Reynolds, J. A., Nachman, R. J., & Denlinger, D. L. (2019). Distinct
microRNA and mRNA responses elicited by ecdysone, diapause hormone and a
diapause hormone analog at diapause termination in pupae of the corn
earworm, Helicoverpa zea. General and comparative endocrinology,
278 , 68-78.
Reynolds, J. A., Peyton, J. T., & Denlinger, D. L. (2017). Changes in
microRNA abundance may regulate diapause in the flesh fly, Sarcophaga
bullata. Insect biochemistry and molecular biology, 84 , 1-14.
Rinehart, J. P., Cikra-Ireland, R. A., Flannagan, R. D., & Denlinger,
D. L. (2001). Expression of ecdysone receptor is unaffected by pupal
diapause in the flesh fly, Sarcophaga crassipalpis, while its
dimerization partner, USP, is downregulated. Journal of insect
physiology, 47 (8), 915-921.
Ritchie, W., Flamant, S., & Rasko, J. E. (2009). Predicting microRNA
targets and functions: traps for the unwary. Nature methods,
6 (6), 397-398.
Robinson, M., McCarthy, D., & Bioinformatics, G. (2020). undefined.
edgeR: a Bioconductor package for differential expression analysis of
digital gene expression data. academic. In: oup. com.
https://academic. oup.
com/bioinformatics/article-abstract/26/1 ….
Rodríguez del Río, Á., Giner-Lamia, J., Cantalapiedra, C. P., Botas, J.,
Deng, Z., Hernández-Plaza, A., . . . Bork, P. (2022). Functional and
evolutionary significance of unknown genes from uncultivated taxa.bioRxiv , 2022.2001. 2026.477801.
Rorbach, G., Unold, O., & Konopka, B. M. (2018). Distinguishing
mirtrons from canonical miRNAs with data exploration and machine
learning methods. Scientific reports, 8 (1), 1-13.
Schnall-Levin, M., Zhao, Y., Perrimon, N., & Berger, B. (2010).
Conserved microRNA targeting in Drosophila is as widespread in coding
regions as in 3′ UTRs. Proceedings of the National Academy of
Sciences, 107 (36), 15751-15756.
Steward, R. A., Pruisscher, P., Roberts, K. T., & Wheat, C. W.
(in review ). Genetic constraints in genes exhibiting splicing
plasticity in facultative diapause
Su, Z., Wilson, B., Kumar, P., & Dutta, A. (2020). Noncanonical roles
of tRNAs: tRNA fragments and beyond. Annual review of genetics,
54 , 47-69.
Süess, P., Dircksen, H., Roberts, K. T., Gotthard, K., Nässel, D. R.,
Wheat, C. W., . . . Lehmann, P. (2022). Time-and temperature-dependent
dynamics of prothoracicotropic hormone and ecdysone sensitivity
co-regulate pupal diapause in the green-veined white butterfly Pieris
napi. Insect biochemistry and molecular biology, 149 , 103833.
Thatcher, E. J., Bond, J., Paydar, I., & Patton, J. G. (2008). Genomic
organization of zebrafish microRNAs. BMC genomics, 9 , 1-9.
Wheat, C. W., Steward, R. A., Okamura, Y., Vogel, H., Lehmann, P., &
Roberts, K. T. (in review ). Functional coherence among miRNA
targets: a potential metric for assessing biological signal among target
prediction methods in non-model species
Wienholds, E., & Plasterk, R. H. (2005). MicroRNA function in animal
development. FEBS letters, 579 (26), 5911-5922.
Williams, C. M. (1952). Physiology of insect diapause. IV. The brain and
prothoracic glands as an endocrine system in the Cecropia silkworm.The Biological Bulletin, 103 (1), 120-138.
Wilsterman, K., Ballinger, M. A., & Williams, C. M. (2021). A unifying,
eco‐physiological framework for animal dormancy. Functional
Ecology, 35 (1), 11-31.
Yates, L. A., Norbury, C. J., & Gilbert, R. J. (2013). The long and
short of microRNA. Cell, 153 (3), 516-519.