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Key findings: 20 
 21 

• Canopy status – inferred from UAV-derived vegetation indices – strongly influences spatial soil 22 
water content and isotope patterns  23 

• UAV-derived vegetation indices correlate well with water isotope values of the underlying soils 24 
across the soil profile 25 

• No spatial homogenization of water isotope values via diffusion and mixing was observed in the 26 
upper soil (<1 m soil depth), a resolution of ~0.5 m results in the best correlations with UAV-27 
derived vegetation indices 28 

• Assigning one or few soil water isotope profiles for characterization of water uptake depths of 29 
larger areas is highly error-prone 30 
 31 
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Abstract 37 

The spatial variation of soil water isotopes (SWI) - representing the baseline for investigating root water 38 
uptake (RWU) depths with water stable isotope techniques - has rarely been investigated. Here, we use 39 
spatial SWI depth profile sampling in combination with unmanned aerial vehicle (UAV) based land 40 
surface temperature estimates and vegetation indices (VI) in order to improving process understanding of 41 
the relationships between soil water content and isotope patterns with canopy status. 42 

We carried out a spatial sampling of ten SWI depth profiles in a tropical dry forest. UAV data were 43 
collected and analyzed to obtain detailed characterization of soil temperature and canopy status. We then 44 
performed a statistical analysis between the VI and land surface temperatures with soil water content and 45 
SWI values at different spatial resolutions (3 cm to 5 m). Best relationships were used for generating soil 46 
water isoscapes for the entire study area.  47 

Results suggest that soil water content and SWI values are strongly mediated by canopy parameters (VI). 48 
Various VI correlate strongly with soil water content and SWI values across all depths. SWI at the surface 49 
depend on land surface temperature (R² of 0.65 for δ18O and 0.57 for δ2H). Strongest overall correlations 50 
were found at a spatial resolution of 0.5 m. We speculate that this might be the ideal resolution for 51 
spatially characterizing SWI patterns and investigate RWU. Supporting spatial analyses of SWI with 52 
UAV-based approaches might be a future avenue for improving the spatial representation and credibility 53 
of such studies.   54 

 55 

Plain Language Summary 56 

In this study, we sought to enhance our understanding of how plants absorb water from different soil 57 

depths. In a tropical dry forest, we collected soil samples at ten locations and used unmanned aerial 58 

vehicles (UAVs) with advanced sensors to gather high-resolution data on soil temperature and vegetation. 59 

By analyzing the relationships between these factors and isotopic values across various depths and 60 

resolutions, we discovered strong correlations between soil temperatures, vegetation indices, and soil 61 

water isotopes. Surface isotopic values were influenced by land surface temperature, and this was linked 62 

to the canopy status. Notably, the most robust relationships between UAV-derived data and soil water 63 

characteristics occurred at a 0.5-meter spatial resolution. This study introduces an innovative method for 64 

exploring the connections between canopy status and soil water isotopes in a spatially distributed manner. 65 



This approach advances our comprehension of how soil-plant interactions vary in heterogeneous forest 66 

systems, particularly in understanding the impact of varying canopy coverage and shading on the spatial 67 

enrichment of soil water isotopes and water content - essential information for root water uptake studies. 68 

Furthermore, our research highlights the potential of combining UAV-based technologies to improve the 69 

spatial representation of soil water isotope data. 70 

Keywords: water isotopes, isoscape, unmanned aerial vehicle, vegetation index, thermal infrared, land 71 

surface temperature, plant water uptake, tropical dry forest 72 
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1 Introduction 74 

 75 
Stable isotopes of water (18O/16O and 2H/H; δ18O and δ2H) are powerful tools for investigating a broad 76 
spectrum of ecohydrological processes in the soil-plant-atmosphere continuum (SPAC) and have been 77 
applied in countless studies. Recent examples include gaining insights into plant water uptake depths 78 
(Kinzinger et al., 2023; Kübert et al., 2023; Kühnhammer et al., 2023), groundwater recharge (Post et al., 79 
2022), ET partitioning (Celik et al., 2022; Tarin et al., 2020) or identifying water sources in general 80 
(Tharammal et al., 2023). Despite the versatility and wide range of questions that can be addressed, 81 
ecohydrological studies have often been limited to small spatiotemporal scales, e.g., the single plant to 82 
plot scale (Goldsmith et al., 2019; Oerter & Bowen, 2019). Describing the spatial heterogeneity of water 83 
isotope values of soils and plants on larger scales remains a challenge despite new technological 84 
opportunities (Beyer and Penna, 2021). With the advent of in situ soil and plant water isotope methods and 85 
other equilibration-based techniques (e.g., Beyer et al., 2020; Gaj et al., 2016; Marshall et al., 2020; 86 
Volkmann, Haberer, et al., 2016; Volkmann, Kühnhammer, et al., 2016), water isotopes in the SPAC can 87 
be monitored at high temporal resolution (sub-daily to daily), which has led to valuable insights into 88 
SPAC interactions (e.g., Dubbert et al., 2014; Kühnhammer et al., 2021, 2023; Oerter et al., 2019; Oerter 89 
& Bowen, 2019; Seeger & Weiler, 2021; Smith et al., 2022). The spatial limitation of critical zone water 90 
isotope studies, however, has received comparably little attention. To date, most studies in the SPAC are 91 
limited to the single tree to plot scale, despite the well-studied and known drivers of soil (δsoil) and tree 92 
xylem water (δxylem) isotopic heterogeneity: topography, soil texture and depth, organic carbon contents, 93 
depth-to-groundwater, geology, vegetation type, species type, and diameter at breast height (DBH) are 94 
inextricably linked and cause severe heterogeneity, even at the plot scale (e.g., Fan et al., 2017, Glaser et 95 
al., 2019, Looker et al., 2018). As a result, the spatial heterogeneity of soil and plant water isotopes, and 96 
consequently plant water uptake depths remain a “black box” (Beyer and Penna, 2021). The above-97 
mentioned factors are present in any given study area – but how can we design representative sampling 98 
schemes to meaningfully assess spatial heterogeneity? This issue can be addressed by either labor-99 
intensive multi-profile sampling aimed at characterizing the heterogeneity or assuming homogeneity 100 
assuming one or a few soil depth profiles are representative of larger spatial areas. For instance, Sánchez-101 
Murillo et al. (2023) collected two soil depth profiles per studied site in five different tropical ecosystems 102 
in Costa Rica and collected all xylem samples on one site within a 5 x 5 m square. Evaristo et al. (2016) 103 
collected and cryogenically extracted profiles at a distance of approximately twice the average DBH from 104 
each tree (Evaristo et al., 2016). Li et al. (2022) deemed three soil depth profiles as representative for the 105 
water source of 30 spatially distributed hemlock trees (Li et al., 2023). In a recent catchment-scale 106 
modelling study, the authors evaluated model simulations based on three individual trees (Sprenger et al., 107 
2022). More recently, Sánchez-Murillo et al. (2023) collected two soil and lysimeter profiles from 0 to 40 108 



cm (restrictive layer) as representative of three species in a subtropical urban green landscape. These 109 
examples demonstrate the quandary researchers often face: we can either heavily sample in small spatial 110 
areas with limited transferability; or assume a certain degree of homogeneity introducing important spatial 111 
aggregation errors. Moreover, there are no objective criteria guiding researchers on which spatial 112 
resolution is suitable in order to best represent a particular study site.   113 
 114 
Until present - and to the author’s best knowledge - we have not been able to provide practicable 115 
approaches for describing spatial patterns of soil water isotopes in heterogeneous environments (e.g., 116 
mixed forest systems on topographic slopes) elaborating on the reasons for this heterogeneity. One 117 
example is the study of Fabiani et al. (2022), who assessed how hillslope position affects tree water use in 118 
a temperate beech-oak forest along a hillslope transect in Luxembourg (Fabiani et al., 2022). Even fewer 119 
studies address the influence of canopy structure and different vegetation types (e.g., deciduous vs. 120 
evergreen trees) on the isotopic composition of soil water. One reason for such a lack of studies is the 121 
inherent difficulty to predict spatial patterns of interacting soil and plant water isotopes. For example: soils 122 
under a dense tree canopy in a hot climate will be subject to less evaporative soil water isotope enrichment 123 
compared to a sparsely vegetated soil. This, in turn, affects the water isotope composition of the 124 
surrounding plants. Gillerot et al. (2022) found a strong link between canopy features (closure, leaf area, 125 
species diversity, height, stand density) and soil temperature. This implies that upscaling of a few point 126 
soil water isotope measurements to larger areas will result in large prediction errors if the canopy structure 127 
and leaf cover are heterogeneous (see Goldsmith et al., 2018). But how does variable canopy structure 128 
quantitatively propagate to soils and soil water isotope values? How variable are soil water isotope values 129 
spatially? To date, these questions remain largely unanswered. Isoscapes (Bowen, 2010, West et al., 2010) 130 
– spatial representations of water isotope patterns – for soil and plant water isotopes are sparse, and the 131 
implications of spatial variations of soils and plants on the water isotope compositions are largely 132 
unknown (see West et al., 2008; West, Kreuzer, et al., 2010). The incorporation of spatial variability into 133 
SPAC models or root water uptake depth estimations remains unexplored.   134 

In order to i) advance our understanding of drivers and potential proxies for the spatial heterogeneity of 135 
soil and plant water isotopes, and ii) provide meaningful descriptions of spatial relationships and measures 136 
for upscaling, novel approaches that can potentially overcome the need for intense sampling are required. 137 
Further, we need representative variables to improve the prediction of soil water isotopes minimizing 138 
errors in the interpolated soil water isotope profile affecting the estimated root water uptake proportions. It 139 
is also not valid to simply use measured plant water isotope data and interpolate it over a heterogeneous 140 
area with multiple tree species of different phenology.  141 



One promising technique to capture high spatial heterogeneity might be the use of UAVs (Unmanned 142 
Aerial Vehicle, Drone). UAVs provide both a high spatial resolution (up to 1 cm) and coverage (up to 143 
km²) and are flexible in their use. For instance, the temporal resolution can be defined by the user, which 144 
is an advantage over satellite-based techniques. UAVs have been used in countless studies on phenology, 145 
canopy structure, stress identification, land surface temperature and to derive model parameters (Bulusu et 146 
al., 2023; Easterday et al., 2019, Ellsäßer et al., 2020; Marzahn et al., 2020). Combining UAV systems 147 
with water isotope approaches might be a potentially promising avenue for addressing the issue of spatial 148 
relationships between canopy parameters and soil and plant water isotope heterogeneity and upscaling. To 149 
the authors’ best knowledge, such a combination of UAV and isotope science has been only published in 150 
the studies of Hellmann et al. (2015). Using a δ15N labeling approach on multiple plant species along two 151 
field transects, the authors were able to show that 15N has an inherent effect on leaf reflectance spectra and 152 
hence, it can be a valuable spatial predictor variable for δ15N.  153 

Here, we combine UAV-derived canopy structure and status information with spatially distinct soil and 154 
plant water isotope data in order to carry out a unique spatial analysis of the relationships between above- 155 
and belowground and developing the first soil-depth resolved soil water isoscapes. The objectives of this 156 
study are to investigate i) the spatial patterns of soil and plant water isotopes in a tropical dry forest; ii) if 157 
spatial patterns of soil water isotopes are related to canopy parameters in the form of UAV-derived 158 
vegetation indices (VI) and land surface temperature; and iii) if these vegetation indices can be used to 159 
provide spatially distributed isoscapes of soil water isotopes.  160 

We test the following hypotheses in this research paper: i.) Substantial spatial differences of soil water 161 
content and soil water isotope values exist during the dry season in tropical ecosystems; ii) Soil 162 
temperature affects evaporation and hence, soil water isotope fractionation even on small spatial scales; 163 
and iii) the spatial differences of soil water isotopes and soil water content are mediated by trees via 164 
different root systems and canopy cover (Goldsmith et al., 2018; McCole & Stern, 2007).  165 

2 Materials and methods 166 

2.1 Study area 167 

The Horizontal Experimental Forest Station (Estación Experimental Forestal Horizontes, EEFH) is a 168 
protected area bordering the Santa Rosa National Park to the south in the northwestern Guanacaste 169 
province of Costa Rica (Figure 1) and is part of the National Park System authority (SINAC). The EEFH 170 
is open to the public and accessible for research allowing manipulation and experimentation on the 171 
predominant tropical dry forest vegetation and ecosystem. A former cattle ranch, the EEFH has been a 172 
protected area for over 30 years, and the vegetation and soils are in different succession states. The terrain 173 



of the EEFH is very flat with increasing topography towards the north and marked by superficial 174 
ignimbrites of around 2 Mio years (Denyer & Gazel, 2009). At a depth of around 30 m, the ignimbrites are 175 
underlain by a basaltic aquitard of around 8 Mio years, which is also the observed groundwater table 176 
depth. The groundwater flows towards the eastern border of the EEFH at the limit to the Tempisque River. 177 
The old volcanic soils of the EEFH are very clay-rich, with high porosity, low saturated hydraulic 178 
conductivity, moderately acidic, and mostly classified as Vertisols. Less developed, coarse grained and 179 
shallow Entisols (50 cm depth) can also be found to a much lesser extent. The tropical climate is 180 
dominated by the seasonal movement of the Intertropical Convergence Zone (ITCZ) resulting in a marked 181 
dry season with virtually no rain from December to April and a rainy season from May to November with 182 
two rainfall peaks in September and October. The average annual rainfall is around 1,500 mm with an 183 
annual potential evapotranspiration of close to 2,500 mm. The air temperature is relatively constant 184 
throughout the year with an average of 25 °C and an average relative humidity of close to 60%. The 185 
experimental plot is located in one of the regenerated parts of EEFH which started 30 years ago. Initially, 186 
different patches of the study area were dedicated to certain, often highly endangered tree species. 187 
However, the tropical dry forest was left unmanaged for these 30 years and now hosts a variety of both 188 
evergreen and deciduous tree species, which are intermixed throughout the study area. The most abundant 189 
tree species within the experimental plot (from high to low abundance) are Swietenia macrophylla, 190 
Sideroxylon capiri, Guazuma ulmifolia, Hymenaea courbaril L., Astronium graveolens J., Simarouba 191 
glauca, Cordia gerascanthus L. and Samanea saman. 192 

A gentle downward slope of the terrain to the west and north exists; soils within the investigated plot are 193 
relatively homogenous (Appendix 1). However, soil surface coverage with leaves and canopy cover 194 
during the dry season varies greatly. This remarkable difference is due to a higher abundance of deciduous 195 
trees in the western part of the study area and is reflected in the normalized difference vegetation index 196 
(NDVI) and RGB images (Fig.1b and c). In addition, a geological fault almost following the borders of 197 
the study area borders in the west and north is believed to exist (pers. communication, EEFH) causing 198 
drainage of deep soil water and potentially a lower water availability in this part of the study area. Figure 199 
1 shows the location of EEFH within Costa Rica and mean annual rainfall (a), an RGB image (b), and an 200 
illustration of the  NDVI for the study area (c). 201 



 202 
Figure 1: a) location of the study site and mean annual rainfall distribution (Sánchez-Murillo & Birkel, 203 
2016); b) RGB image of the monitored ~1 ha tropical dry forest plot, the position of the destructive soil 204 
(crosses) and tree xylem (triangles) sampling and c) NDVI derived from UAV digital imagery. 205 

2.2 Fieldwork 206 

In the framework of the Isodrones project (www.isodrones.com), we established an experimental station 207 
in a tropical dry forest (Guanacaste, Costa Rica) in 2019. A fully automated HOBO RX3000 208 
meteorological station recorded half-hourly rainfall, barometric pressure, relative humidity (RH), air 209 

temperature (T, °C), solar radiation (W/m2), and dew point (°C). The station was connected to a solar 210 
panel and cleaned weekly for maintenance. Soil moisture was recorded every 15 min using eight Odyssey 211 
Xtreem multi-profile soil moisture probes (Dataflow Systems United, Christchurch, New Zealand) at 10, 212 
20, 50, and 100 cm depth below surface at the locations indicated in Figure 1 in form of two transects 213 
crossing each other in the center of the core experimental area. This way, a greater spatial resolution was 214 
achieved in the core experimental area, but potential gradients along these transects could be resolved. 215 
Two additional continuous soil moisture monitoring pits were installed in the two core experimental plots 216 
(refer to Kühnhammer et al., 2021). During the installation of the soil moisture probes for each depth, we 217 
collected soil samples using a standard soil corer for analysis of soil physical parameters (soil texture, 218 
porosity, saturated hydraulic conductivity, organic matter content, pH) in the laboratory of the Department 219 
of Geography at the University of Costa Rica. Soil samples were immediately transported to the lab and 220 
processed (Appendix A).  221 



Between February and May 2019, two characteristic dry forest tree species, Swietenia macrophylla (local 222 
name “Caoba”) and Sideroxylon capiri (local name “Tempisque”) – both rare and valuable wood species – 223 
were continuously measured for their water isotope signatures in xylem (at least twice per day) and sap 224 
flow (30 min intervals, Implexx, Edaphic Scientific, Moorabbin, Australia) (Kühnhammer et al., 2021). At 225 
each of the plots, in situ soil water isotope profiles were measured for the same period of time 226 
continuously (twice per day). In order to transfer the findings of these tree-scale investigations to the 227 
larger experimental area (Fig. 1), destructive soil water isotope profiles were collected in March 2019 (the 228 
middle-to-end of the dry season) at the ten positions where the multi-profile soil moisture probes were 229 
installed (Fig. 1) and in the two soil pits, using a hand auger (Royal Eijkelkamp, Giesbeek, Netherlands). 230 
The ten sampling points were selected reflecting the heterogeneity of vegetation cover, i.e., some of the 231 
soil profiles were collected underneath a fully green canopy, whereas some were taken from bare soil that 232 
was only covered with leaf litter. Samples were taken at depths of 5, 10, 20, 30, 50, 100 cm with three 233 
replicates per depth and approximately 5-10 g of soil collected in exetainer vials (Labco Ltd., High 234 
Wycombe, UK). At two of the profiles, soil samples up to 2 m of soil depth were taken (data shown in 235 
results but not used for subsequent spatial analysis); deeper sampling was impossible due to the presence 236 
of bedrock. The vials were immediately sealed and stored in a freezer. Around the positions of soil-depth 237 
sampling, we collected xylem samples of 54 trees on March 10th, 2019, using an increment corer (core 238 
diameter 5.15 mm, Haglöf Sweden AB, Långsele, Sweden) with three replicates each, yielding 162 239 
samples in total. The experimental plot is located in a mixed forest with deciduous, facultative deciduous, 240 
and evergreen trees being present. For the spatial sampling, we decided to collect xylem samples of all 241 
trees within a 10 m diameter around the positions where soil depth profiles were taken. The species 242 
present on site were (local names in brackets) S. macrophylla (“Caoba”), S. capiri (Tempisque”), G. 243 
ulmifolia (“Guacimo”), H. courbaril L. (“Guapinol”), A. graveolens J (“RonRon”), S. glauca 244 
(“Aceituno”), C. gerascanthus L. (“Laurel negro”) and S. saman (“Cenicero”). The samples were 245 
collected from suberized stems at chest height, bark was removed, and sapwood was transferred into 246 
exetainer vials.  247 

The UAV overflights were carried out with a quadcopter (DJI Matrice 210) equipped with three cameras: 248 
a combined visible and thermal camera (Zenmuse XT2, DJI, sensitivity <50 mK at f/1.0, resolution 249 
thermal image 640 x 512 pixels, field of view 45 x 37 ° and, field of view 57 x 42 °) and two multispectral 250 
cameras (MicaSense RedEdge-MX Dual Camera Imaging System, DJI, wavelength range, 444 nm - 842 251 
nm, 10 channels, resolution visual 4000 x 3000 pixels) were used (Gerchow et al., under review). The 252 
thermal camera was set to the high gain mode (detectable temperature range from -25 °C to 135 °C), and 253 
the thermal images were stored in radiometric JPEG images (i.e., temperature calibration parameters by 254 
the manufacture and raw sensor values were stored within the image metadata). The camera captured a 255 
synchronized thermal, multispectral and visible image. UAV overflights took place twice per week at pre-256 



dawn and midday during a large sampling campaign in February to May 2019. For the spatial analysis 257 
only flights performed around the days of destructive sample collection (March 7th and March 14th) were 258 
used and correlated against the soil water isotope data. 259 

2.3 Laboratory methods 260 

Soil and xylem samples were transported to the TU Braunschweig, Germany (samples were cooled 261 
throughout the transport) and water was extracted from all samples using cryogenic vacuum extraction 262 
(CVE) based on the system described in Koeniger et al. (2011) with one modification: instead of a water 263 
bath, a custom-made aluminum block mounted on a heating plate with slots to insert sample vials was 264 
used. This allows for higher and more stable extraction temperatures (Gaj et al., 2017; Oerter et al., 2014). 265 
First, samples were frozen by submerging them into liquid nitrogen. Sample and extraction vials were 266 
connected with a stainless-steel capillary and evacuated (pressure < 0.04 mbar) by inserting a syringe 267 
connected to a vacuum pump (TRIVAC T, Leybold GmbH, Köln, Germany) through the septum of the 268 
sample vial. Water contained in samples was extracted at 140 °C for 25 and 30 min for soil and xylem 269 
samples, respectively. Evaporated water was collected in extraction vials, which were submerged in a 270 
liquid nitrogen cold-trap. Soil samples were analyzed on a CRDS analyzer (L2130-i, Picarro Inc., Santa 271 
Clara, California, USA) and plant samples were measured with an IRMS connected with a TC-EA 272 
(Thermo Fisher Scientific, Waltham, MA, USA). After extraction, samples were weighed and then dried 273 
at the extraction temperature for 24 h. A comparison of the weights after extraction and after drying 274 
allowed determining whether water extraction was complete. If the weight difference after extraction and 275 
after oven drying was greater than 10% with respect to the total extracted water, the samples were 276 
discarded. Organic contamination was assessed using ChemCorrect (Picarro Inc., Santa Clara, California, 277 
USA) and contaminated (i.e., red- or yellow-flagged) samples were excluded from the subsequent data 278 
analysis. 279 

2.4 Data analysis 280 

2.4.1 Water isotope data 281 
A three-point calibration using internal laboratory standards was applied and samples were corrected for 282 
drift and memory (van Geldern & Barth, 2012). Stable isotope ratios of all samples are expressed in per 283 
mil [‰] relative to the Vienna Standard Mean Ocean Water (VSMOW). The analytical long-term 284 
precision for a quality standard (non-labeled sample) is better than 0.2 ‰ for δ18O and 0.8 ‰ for δ2H, for 285 
the CRDS measurements and better than 0.5 ‰ for 18O and 2 ‰ for 2H for TC/EA-IRMS measurements, 286 
respectively. 287 



Linear regression was used to develop Meteoric and Evaporation Lines for the dual isotope data and the 288 
goodness-of-fit was reported with a Coefficient of Determination R2 and the significance p. In addition to 289 
the deuterium excess (d-excess in ‰) we also calculated the line-conditioned excess (lc-excess in ‰) 290 
(Landwehr & Coplen et al., 2004) using the Local Meteoric Water Line (LMWL). The LMWL of the 291 
study area has a slope of 7.4 and an intercept of 4.6 (R²=0.98) and was determined using rainfall isotope 292 
data collected between 2014 and 2021.  293 

2.4.2 Processing of UAV data and UAV-derived indices 294 

The captured thermal, multispectral, and visible images were processed into a geometrically corrected and 295 
temperature-calibrated orthomosaic. The original grid size of the UAV-derived VI is ~3 cm. The structure 296 
from motion (SFM) pipeline was executed in commercial photogrammetry software (Agisoft Metashape) 297 
and the temperature calibrations were executed by custom scripts (Python). The images (i.e., thermal, and 298 
visible) were taken at the same time and with a fixed transformation between both sensors. Therefore, the 299 
extrinsic parameters (location and orientation) of the thermal images were inferred by transforming the 300 
extrinsic parameters of visible images. After the image alignment, ground temperature references were 301 
marked in world coordinates and projected to image coordinates. The projected image coordinates were 302 
then used to extract the raw thermal values of the ground references. The thermal sensor was calibrated 303 
against the known temperature reference values in degree Celsius using the repeated empirical line 304 
method, which was found to provide the most accurate absolute temperatures (abs. errors > 1.3 °C) in a 305 
recent method test for calibrating thermal images (Gerchow et al., under review). The multispectral 306 
images were processed independently and aligned with the temperature-calibrated orthomosaic via six 307 
ground control points, which were placed in the study area at forest clearings to be visible from above. 308 

In total, 14 VI were derived from the multispectral imagery and generated using a raster calculator. 309 
Mathematical formulas for each VI are based on Walsh et al. (2018), Xue & Su (2017) and ArcGIS 310 
resources (https://pro.arcgis.com/en/pro-app/latest/arcpy/spatial-analyst/bai.html). We limit this section to 311 
the most relevant indices relevant for this investigation. For detailed information, Appendix B summarizes 312 
all investigated VI and their respective calculation formulas. 313 

NDVI is a widely used vegetation index that measures the density and health of vegetation. It is calculated 314 
from the ratio of the difference between near-infrared (NIR) and red band reflectance (Red) values to the 315 
sum of those reflectance values. The equation for calculating the NDVI is NDVI = ((NIR - Red)/(NIR + 316 
Red)). The typical range of NDVI values is between -1 and 1. Negative NDVI values generally indicate 317 
features like water bodies or clouds, where vegetation is absent or has very low reflectance in the NIR 318 
range. Values close to zero indicate bare soil, rock, or urban areas with minimal vegetation cover. Positive 319 



NDVI values represent varying degrees of healthy vegetation, with higher values indicating denser and 320 
healthier vegetation cover. 321 

The Simple Ratio Edge Vegetation Index (SREVI) is a vegetation index that is used to assess vegetation 322 
health and vigor. It is a modification of the Simple Ratio Vegetation Index (SRVI) that incorporates the 323 
use of edge detection to enhance the sensitivity to vegetation boundaries. The formula for calculating the 324 
SREVI is SREVI = (NIR / Red) * (Edge + 1), where NIR is the near-infrared band reflectance, Red is the 325 
red band reflectance, and Edge is the edge detection result. The NIR and Red band reflectance values 326 
represent the reflectance intensity of the respective bands, typically ranging from 0 to 1. The Edge 327 
parameter represents the edge detection result, which is derived by an edge detection algorithm. By 328 
multiplying the NIR/Red ratio with the edge detection result, the SREVI aims to emphasize the edges or 329 
boundaries of vegetation patches. This can be useful in applications where accurate delineation of 330 
vegetation boundaries is important, such as land cover mapping or vegetation classification. 331 

The Ratio Transformation Vegetation index (RTVI) is a vegetation index that is used to assess vegetation 332 
health and vigor. It is derived from the ratio of NIR and red band reflectance values of satellite or airborne 333 
remote sensing data. The formula for calculating the RTVI is RTVI = (NIR / Red) - 1. The RTVI is 334 
designed to enhance the contrast between healthy and stressed vegetation. Higher values of RTVI indicate 335 
healthier and more vigorous vegetation, while lower values indicate stressed or less healthy vegetation. It 336 
is commonly used in agricultural and ecological studies to monitor vegetation conditions, estimate 337 
biomass, and detect vegetation stress. The typical range of the RTVI varies depending on the dataset and 338 
the specific calibration used. However, in general, the RTVI values range between -1 and +∞. Negative 339 
values of RTVI indicate stressed or less healthy vegetation, while higher positive values indicate healthier 340 
and more vigorous vegetation. The exact interpretation of the RTVI values may depend on the specific 341 
study, calibration, and the vegetation type being analyzed. 342 

The color infrared (CIR) is not a VI in the strict sense. Rather, CIR is a false color image that shows the 343 
reflected electromagnetic waves from an object as follows: NIR, which is invisible to the human eye, in 344 
red color; green light reflectance in blue color and red light reflectance as green color. Hence, it uses three 345 
bands and inverts their respective colors in order to create a visual image including the NIR band. The 346 
usefulness of using CIR images is based on the fact that most objects exhibit a negligible NIR reflectance, 347 
but actively growing plants exhibit a high NIR reflectance (more than six times greater than a plant’s 348 
reflectance of visible green light), and stressed plants (either from disease or drought) exhibit a reduction 349 
in their NIR reflectance. Consequently, actively growing vegetation shows up prominently in a color 350 
infrared ratio (CIR) image as bright red, stressed vegetation as a darker red, and a non-vegetated area 351 
shows up as a color dependent on its material composition.   352 

 353 



2.4.3 Correlation analysis of water isotope data vs. UAV-derived indices 354 

We carried out a correlation analysis between each of the 14 VI and the ground-based variables at each 355 
station (soil water content (wc), δ18O, and δ2H for each depth and soil surface temperature) using the 356 
square of the Pearson product moment correlation coefficient (R²) and Pearson correlation coefficient (r).  357 

The original grid size of the UAV-derived VI is ~ 3 cm. Using such a high resolution and correlating it 358 
with ground-based measurements might be error-prone because an area of 0.9 cm² is unlikely to be 359 
representative of the whole canopy above a soil profile. In order to investigate the spatial effect of the grid 360 
size, we resampled the VI rasters to different cell sizes. The cell sizes for which the correlation analysis 361 
was carried out were 0.03 m (original), 0.5 m, 1 m, 2 m, and 5 m. In order to decide which spatial 362 
resolution was most suited for the generation of soil water isoscapes, R² across all depths and parameters 363 
(soil water content, δ18O, and δ2H) was summed up and compared for the different spatial resolutions. The 364 
highest overall R², the highest R² total for shallow soil (5 and 10 cm) and the highest R² for deeper soil 365 
were calculated. Based on this, the best resolution for generating the isoscapes was selected. 366 

In order to test the validity of the hypothesis that canopy parameters affect soil water enrichment via the 367 
mediation of soil temperatures, we extracted the UAV-derived soil temperatures at the positions where the 368 
destructive water isotope depth profiles were taken (see Fig. 1c). In order to do this, only soil pixels (not 369 
vegetation) were extracted in GIS and the soil temperatures of all soil pixels around one plot extracted 370 
from the calibrated thermal images. At least 10 soil pixels at each plot were sampled, and the average was 371 
taken as soil temperature at the respective plot.  372 

2.4.4 Interpolation, cross-validation, and generation of isoscapes 373 

Spatial interpolation of water content, δ18O, and δ2H for depths ranging from 5 to 100 cm was performed 374 
using different methods. The following techniques based exclusively on information of the target variable 375 
and locations in space were applied: inverse distance weighting (IDW) and ordinary kriging (OK); 376 
whereas techniques that require additional explanatory variables are kriging with external drift (EDK) and 377 
linear regression (LR) (Isaaks & Srivastava, 1989). Shapiro-Wilk test was used to test the normality of the 378 
variables to be spatially interpolated (Royston, 1995). Leave-One-Out Cross-Validation procedure was 379 
used to estimate the performance of each technique. The technique delivering the lowest root mean 380 
squared error (RMSE), i.e., the lowest difference between observed and estimated values, was selected to 381 
perform the spatial interpolation. Results are presented as RMSE divided by standard deviation (SD). 382 
Explanatory variables used when performing EDK and LR were selected based on the maximum Pearson 383 
correlation between point (water content, δ18O, and δ2H) and grid data (data or indicators derived from 384 
remote sensing/drone flights). Furthermore, for each depth the variables δ18O and δ2H indicate correlations 385 
(Pearson and Spearman, respectively) significantly different than zero, therefore two additional spatial 386 



estimations were performed applying EDK and LR, using as explanatory variable the spatially 387 
interpolated either δ18O and δ2H, i.e., the best performing one.  388 

Lc-excess was not interpolated; rather, it was calculated for each grid cell using the coefficients for slope 389 
and intersect of the LMWL, which results in the following equation: lc = δ2H - 7.4 δ18O - 4.6. This way, 390 
the spatial patterns of lc-excess become an additional way of validating the interpolations, as poor 391 
interpolation results for δ18O or δ2H would result in unreasonable lc-excess values. 392 

All statistical analyses were done with the R statistical programming language (R core team, 2023), the 393 
packages used include: rgdal, raster, foreign, gstat, parallel, yaImpute, sp, automap. Soil and vegetation 394 
isoscapes were developed using a simple spline interpolation algorithm applied over the study plot area as 395 
implemented in ArcGIS 10.5.    396 

3 Results 397 

3.1 Plot-based patterns of soil water content and isotope values of soils and vegetation 398 
Soil water content and soil water isotope data of the ten plots are presented as depth profiles (Figure 2).  399 



 400 
Figure 2: δ18O, δ2H (in ‰), gravimetric soil water content (wc in %), and lc-excess (in ‰) profiles for the 401 
ten soil moisture depth-profiles are shown for the dry season sampling in March 2019. 402 

Dry season soil water content was on average very low - always below 8% (Table 3). This corresponds to 403 
matrix potential values below the permanent wilting point (~ 12 % for the investigated soils, determined 404 
with the software HYPROP (Metergroup, Munich, Germany), data in Appendix 1). The driest conditions 405 
were close to the surface and the soil water content slightly increased towards a depth of 50 cm and 406 
leveled off with a depth below 50 cm. Water isotope profiles follow a typical shape: the most enriched soil 407 
water isotope values were found close to the surface (on average 0.0 ‰ in δ18O and -39.2 ‰ in δ2H at 5 408 
cm depth) with increasing depletion and minimum isotope values at 50 cm (on average -9.3 ‰ in δ18O and 409 



-73.9 ‰ δ2H at 50 cm depth). Deeper horizons showed slightly more enriched isotope values. In 100 cm 410 
depth, the average values across all profiles are -8.9 ‰ for δ18O and -70.5 ‰ for δ2H, respectively. The 411 
two profiles that were sampled deeper (up to ~200 cm) had isotope values of -7.5 ‰ for δ18O and -55.9 ‰ 412 
for δ2H in the deepest layer and plot in between the soil water isotope values at 100 cm soil depth and the 413 
isotope composition of groundwater. Lc-excess consistently decreases with depth from more negative 414 
towards zero reflecting a lower degree of evaporative enrichment with depth. With respect to the spatial 415 
variation of isotope values per soil depth, δ18O ranges are between 2 ‰  and 9 ‰, and δ2H ranges are 416 
between 16 ‰ and 34 ‰ (both for 150 cm depth and 10 cm depth, respectively; Table 1).  417 
 418 
Table 1: The dry season soil profiles from Figure 3 are summarized in this table. 419 

 

wc 
[%] 

Range wc 
[%] 

δ18O 
[‰] 

Range 
δ18O 
[‰] 

δ2H 
[‰] 

Range 
δ2H 
[‰] 

lc-
excess 
[‰] 

no. samples 
(profiles x 
replicates) 

5 2.8 2.4 0.0 5.4 -39.2 21.7 -43.8 30 (10x3) 
10 3.6 3.7 -4.6 9.1 -57.7 34.4 -28.3 30 (10x3) 
20 4.1 4.1 -7.7 5.9 -69.7 23.0 -17.0 30 (10x3) 
50 4.0 3.0 -9.0 4.3 -72.5 24.1 -10.0 30 (10x3) 

100 3.5 4.5 -8.9 3.5 -70.7 20.9 -9.3 30 (10x3) 
150* 6.6 3.2 -7.5 2.0 -55.9 16.0 -4.8 5 (5x1) 

*not used for further analysis because not available for all profiles 420 
The initial dry season water isotope relationships are presented in the form of a dual-isotope plot including 421 
regression lines (Figure 3). 422 

  423 
Figure 3: Dual-isotope plot of a four-year daily rainfall record sampled in Liberia at a distance of 30 km 424 
from the experimental dry forest plot (with Local Meteoric Water Line, LMWL, solid blue; Sánchez-425 



Murillo et al., 2020), mean on-site groundwater (water table ca. 30 m below ground), the mean streamflow 426 
of nearby Tempisque river (roughly 1 km distance), mean soil water isotope values originating from the 9 427 
sampling sites at different depths (5 cm, 10 cm, 20 cm, 50 cm, and 100 cm) and mean xylem water isotope 428 
composition from evergreen and deciduous trees, respectively. Soil evaporation (dashed yellow) and 429 
xylem lines (dashed green) are constructed from a total of 150 soil water isotope samples and 162 xylem 430 
samples. 431 

Sampling was carried out three months after the last rainfall of the 2018 rainy season under hot (T average 432 
of 32 °C) and dry (RH average of 48.5 %) environmental conditions. In addition to the LMWL (using 433 
daily rain samples collected since 2014), we plotted the average rain as well as the 2018 end-of-rainy-434 
season average from September to November prior to the sampling campaign in March 2019 (Figure 2). 435 
This end-of-rainy-season rainfall is the source water for soil evaporation during the dry season. The 436 
isotopic enrichment due to evaporation can be seen in the dual isotope plot (Fig. 2 b); the highest 437 
enrichment is present in the shallow soil samples and decreases with soil depth. The deepest soil samples 438 
(~150 cm) divert from the evaporation line, indicating mixing with previous rainy season water. The 439 
average streamflow from the nearby Tempisque River draining the study area fell close to the average rain 440 
indicating mass balance equilibrium. The on-site average isotope composition of groundwater was slightly 441 
more depleted compared to average rainfall and streamflow indicating substantial recharge through 442 
isotopically depleted rain events (May to October). The rain events with the lowest isotope values 443 
correspond to the rainfall events with the highest total rainfall, i.e., extreme events such as tropical 444 
rainstorms. Three of such events were registered at the site in the antecedent (2018) rainy season; all of 445 
them occurred in the late rainy season between August and October (data not shown). Both soil and xylem 446 
water plot on a line that has a lower slope compared to the LMWL indicating that i) superficial soil 447 
undergoes variable isotope fractionation and ii) a notable number of plants take up fractionated water 448 
and/or a mixture of fractionated soil water and non-fractionated water. The xylem samples plot between 449 
the soil evaporation line and the LMWL. Slopes for xylem and soil water isotope evaporation lines are 450 
almost identical (Table 2). The end of the rainy season 2018 average rainfall water and the above-451 
mentioned extreme events are likely the moisture origin for the dry season soil and xylem samples. Little 452 
difference in the isotope values between vegetation types can be observed from the dual-isotope plot, but 453 
the slopes differ, with a lower slope for the deciduous trees compared to evergreens. However, the R2 for 454 
the regression through deciduous trees is slightly lower (0.61) compared to the evergreen line with an R2 455 
of 0.84 (Table 2). 456 

 457 

 458 

 459 

 460 



Table 2: Regression equations, R2 and p-values of the rain (Local Meteoric Water Line, LMWL), soil and 461 
different vegetation-type xylem evaporation lines. 462 

Type Equation R2 p-value 

LMWL δ2H = 7.4 δ18O + 4.6 0.97 < 2.2e-16 

Soil δ2H = 3.6 δ18O - 39.6 0.94 < 2.2e-16 

Xylem δ2H = 3.3 δ18O - 37.9 0.81 < 2.2e-16 

Xylemevergreen δ2H = 3.3 δ18O - 39.4 0.93 < 2.2e-16 

Xylemdeciduous δ2H = 3.9 δ18O - 34.5 0.75 < 1.579e-

07 

3.2 UAV-derived vegetation indices (VI) 463 

In total, 14 VI were calculated from the multispectral images and used for the correlation analysis (Xue & 464 
Su, 2017). All investigated VI show a clear spatial pattern and differentiation of soil vs. canopy pixels 465 
(Fig. 4); furthermore, the heterogeneity within the canopy of one and in between different trees is clearly 466 
revealed by the VI maps. Depending on the wavebands used to compute the VI, these reflect differences in 467 
biomass (e.g., NDVI, Fig. 4 a), stress (e.g., SREVI, RTVI, Fig. 4 b and c), or general plant health (e.g., 468 
CIR, Fig. 4 d). In Fig. 4, four selected VI maps for the study site are shown.  469 



 470 
Figure 4: Spatial maps of selected VI. a) NDVI, b) SREVI, c) RTVI and d) CIR. 471 

The VIs revealed general features and vegetation patterns: The highest leaf cover, biomass, and vegetated 472 
area is located in the central and western part of the study area (Fig.4 a and b). According to the NDVI, 473 
large parts of the study area fall into the categories “dense and healthy vegetation” (NDVI > 0.5) and 474 
“moderate vegetation density and moderately healthy vegetation” (NDVI 0.2 - 0.5). The remainder (less 475 
than 30 %) of the study area is categorized as “sparse or stressed vegetation” (NDVI 0 - 0.2), and “bare 476 
soil and minimal vegetation cover” (NDVI ~ 0). Only the roof of the instrumentation hut falls into the 477 
category “non-vegetated surfaces” (NDVI <= 0). SREVI (Fig. 4 b) provides a sharper detection of the 478 
borders between vegetated and non-vegetated areas compared to NDVI (Fig. 4 b). A notable difference 479 
from NDVI is that based on SREVI, a smaller area of the study area is categorized as healthy. SREVI 480 
defines values ranging between 2 and 8 as healthy vegetation; the highest observed values for the study 481 
area did not exceed 4. More than 50 % of the study area reached values lower than 2, corresponding to 482 
unhealthy vegetation, minimal vegetation cover or soil. The two VI‘s in the lower panels of Fig. 4 provide 483 



further evidence on the stress status of the investigated vegetation. The RTVI (Fig. 4 c) illustrates that 484 
only a few of the investigated canopies (< 20 % of the study area) fall into the category “healthy 485 
vegetation”, which is defined as values greater than one. Values between 0.5 and 1 depict moderately 486 
healthy vegetation and values lower than that of stressed vegetation. A similar pattern is revealed by the 487 
composite image (CIR, Fig. 4 d); however, the CIR provides a good visualization of the nuances of 488 
vegetation health, with the brightest purple corresponding to healthy vegetation and the darker the purple 489 
gets, the less healthy a canopy is. CIR also provides a clear distinction between soil, branches, and 490 
artificial elements. However, we limit this analysis to the spatial relationships. 491 

3.3 Spatial relationships of soil and xylem water isotope values with UAV-derived surface 492 

temperature and vegetation indices 493 

The presentation of the water isotope and water content relationships with VI is divided into two parts: i.) 494 
the spatial analysis of surface soil temperature (based on the calibrated thermal images) vs. the ten soil 495 
water isotope depth profiles in order to validate the hypothesis that soil temperature controls isotope 496 
fractionation; and ii.) a spatial analysis involving all other VI. For i.), only pixels identified as soil pixels 497 
were used avoiding bias by leaf temperature (leaf pixels). We also correlated plant physiological (DBH, 498 
stem water content, and plant height) and topographical (elevation) parameters and did not find any 499 
significant relationships with neither soil nor vegetation isotopes (data not shown). Xylem water isotope 500 
values were only significantly related to stem water content and no other variables were included in this 501 
analysis.  502 

3.3.1 Soil surface temperature vs. isotope values 503 

For testing the validity of the hypothesis that canopy parameters affect soil water isotope enrichment via 504 
the mediation of soil temperature, we correlated soil temperature at each plot (obtained from the calibrated 505 
thermal images) with soil water content, the water isotope values, and lc-excess. The final calibrated 506 
thermal image is presented in Figure 5. 507 



 508 
Figure 5: Calibrated thermal image showing absolute surface temperatures of soils, leaves and other 509 
elements (roofs, branches) for the study area. Purple crosses indicate the positions where soil water 510 
isotope depth profiles were analyzed. 511 

The thermal image reveals a strong difference between leaf temperature and all other surfaces; the canopy 512 
temperature is below air temperature (~42 °C) and observed soil temperature (up to 60 °C). The highest 513 
temperature was observed behind the instrument shed (the dark blue rectangle with the lowest 514 
temperature), where soils are most compacted (this was the entrance and exit path to the forest) and no 515 
vegetation cover exists. Note that Fig. 5 only shows surface temperature, i.e., it also includes vegetation 516 
and other elements. However, because of the high resolution of the thermal image (3 cm), the thermal 517 
image could be used to infer soil temperature at all positions where soil water isotope profiles were taken 518 
(refer to methods). Soil temperature extracted from the thermal image taken at midday (solar peak) for the 519 
ten plots ranged between 35 °C underneath the canopies of the evergreen trees which still had leaves to 60 520 
°C in the bare soil regions. Temperature was calibrated and validated in the process of thermal image 521 
calibration; the accuracy of the thermal data was found within +/- 2 °C (Gerchow et al., under review). 522 
The average temperature across all ten profiles was 46 °C. Fig. 6 shows the relationship between soil 523 
surface temperature and water isotope values for the soil surface (top 5 cm). 524 

 525 

 526 



a 

 

b 

 
Figure 6: Soil water isotope values for δ18O (Fig. 6a) and δ2H (Fig. 6b) vs. soil surface temperature for the 527 
ten investigated spatial positions at the soil surface (5 cm soil depth). 528 

The analysis shows that UAV-derived soil surface temperature is clearly related to the isotope values of 529 
the uppermost 5 cm across the investigated area. Hence, the hypothesis that surface temperature affects 530 
fractionation at the soil surface is supported by our data. The results of correlating thermal data and 531 
isotope values for the ten plots and all investigated soil depths are summarized in Table 3. 532 

Table 3: Results of the correlation analysis of UAV-derived soil temperatures vs. soil water isotope 533 
values, lc-excess and soil water content. 534 
soil depth [cm] 5 10 20 50 100 
 R²/COR 
Tsoil vs. δ18O 0.65 / 0.80 0.14 / 0.38 0.02 / 0.14 0.01 / -0.02 0.04 / -0.2 
Tsoil vs. δ2H 0.57 / 0.76 0.13 / 0.35 0.01 / 0.11 0.002 / -0.05 0.004 / 0.1 
Tsoil vs. lc 0.45 / -0.67 0.16 / -0.40 0.03 / -0.17 0.001 / -0.03 0.18 / 0.42 
Tsoil vs. wc 0.001/-0.03 0.04/-0.19 0.00/0.07 0.11/0.33 0.00/-0.02 

The positive correlation indicates that with greater soil temperature (e.g., as observed in the non-vegetated 535 
parts of the study area) both δ18O and δ2H values are more enriched, and lc-excess is more negative.  The 536 
strength of this relationship decreases with soil depth and diminishes at 20 cm.  537 

3.3.2 Vegetation indices vs. soil water isotope values 538 

We found that a raster size of 0.5 m yields the highest correlations. The order of correlations from high to 539 
low (cumulative R² across all depths for δ18O, δ2H, and wc) for the different resolutions investigated were 540 

0.5 m (𝑅𝑅2 = 9.6) > 0.03 m (original resolution, 𝛴𝛴𝑅𝑅2 = 8.6) > 1 m = 2 m = 5 m (𝛴𝛴𝑅𝑅2 = ~ 7). The 0.5 m 541 
resolution also had highest R² sums when separating shallow and deep soil correlation results. Hence, all 542 
subsequent analysis was carried out with the 0.5 m raster dataset for all VI’s. Fig. 7 shows the spearman 543 



correlation matrix for the complete dataset. The spearman matrices with the correlation analysis for all 544 
individual depths can be found in Appendix C. 545 

 546 
Figure 7: Spearman correlation matrix investigating the relationships between water isotope values, soil water 547 
content and 14 vegetation indices for the complete dataset. 548 

Out of the 14 investigated VI’s, the highest correlation with spatial isotope patterns were found for: 549 
NDVI, RTVI, CIR, and SREVI. Surprisingly, acceptable relationships between the investigated VI’s and 550 
soil water content/soil water isotope values were found for all depths and not only for the uppermost soil 551 
layers (Table 4). For water content, SREVI showed the highest correlation for 5 cm depth, RTVI for the 552 
depths of 10 cm, 20 cm and 50 cm, and CIR for 100 cm. Both δ18O and δ2H values correlated best with the 553 
same VI’s (NDVI for 5 cm, RTVI for 10 cm, CIR for 20 cm and 50 cm) except for 100 cm depth (CIR for 554 
δ18O and RTVI for δ2H). Highest correlations per depth were observed for 5 cm, 10 cm, and 100 cm 555 
(Table 4). A summary of the highest observed relationships between different VI and soil parameters is 556 
presented in Table 4. 557 



Table 4: Results of the correlation analysis of the VI with soil water content and water isotopes for all 558 
investigated soil depths (5 to100 cm). R² is the coefficient of determination and COR is the Pearson 559 
correlation coefficient. 560 

water content 

Highest-
correlated UAV 

index R² COR 
5 SREVI 0.67 0.82 

10 RTVI 0.82 -0.91 
20 RTVI 0.57 -0.76 
50 RTVI 0.56 -0.75 

100 CIR 0.73 -0.85 
δ18O    

5 NDVI 0.69 -0.83 
10 RTVI 0.62 0.82 
20 CIR 0.42 0.65 
50 CIR 0.49 -0.7 

100 CIR 0.76 -0.84 
δ2H    

5 NDVI 0.48 -0.69 
10 RTVI 0.79 0.89 
20 CIR 0.63 -0.79 
50 CIR 0.69 -0.83 

100 RTVI 0.81 -0.9 

3.4 Spatial patterns of soil water content and soil water isotopes - isoscapes 561 

3.4.1 Results of cross-validation 562 

Table 6 shows the performance of the different interpolation models, for the three analyzed variables and 563 
different depths as RMSE/SD and based on leave one out cross validation. The results indicate that the 564 
explanatory variables were in all cases able to improve the spatial interpolation as best selected models 565 
were in all cases either LR or EDK. Furthermore, the estimation of δ2H was in two cases (5 and 50 cm) 566 
best estimated by using the interpolated δ18O for the same depths. The best performing models presented 567 
in the last column were used to interpolate the variables (see Fig. 8-11).  568 

 569 

 570 

 571 

 572 



Table 5: Performance of different methods used for spatial interpolation of the variables and depths 573 
presented as RMSE/SD, explanatory variables and best performing models. 574 

Variabl
e 

Dept
h Method Expl. 

variabl
e 

Method Expl. 
variable 

Best 
model 

cm 
ID
W OK EDK LR 

EDK
* 

LR
* 

wc 

5 1.03 1.06 0.58 0.64 SREVI - - - EDK 

10 0.97 0.73 0.59 0.59 RTVI - - - 
EDK&L

R 

20 0.95 0.95 0.70 0.70 RTVI - - - 
EDK&L

R 
50 1.21 1.30 0.81 0.76 RTVI - - - LR 

100 0.87 0.76 0.37 0.53 CIR - - - EDK 

           

δ2H 

5 1.12 1.05 0.79 0.79 NDVI 0.80 0.74 
δ18O 

(EDK) LR* 

10 1.10 0.66 0.29 0.29 RTVI - - - 
EDK&L

R 
20 0.73 0.73 0.41 0.50 CIR - - - EDK 

50 0.99 1.05 0.69 0.62 CIR 0.71 0.59 
δ18O 

(EDK) LR* 
100 0.95 1.05 0.40 0.45 CIR - - - EDK 

           

δ18O 

5 1.11 1.08 0.67 0.67 NDVI - - - 
EDK&L

R 
10 1.06 0.66 0.45 0.54 RTVI 0.45 0.49 δ2H (EDK) EDK 

20 1.10 1.72 1.04 1.04 CIR 1.30 1.22 δ2H (EDK) 
EDK&L

R 
50 0.94 0.94 0.50 0.81 CIR - - - EDK 

100 1.01 1.07 0.62 0.62 RTVI 1.16 1.13 δ2H (EDK) 
EDK&L

R 

3.4.2 Water content 575 

Gravimetric soil water content (wc in %) at the time of sampling (peak of the dry season) was generally 576 
very low (Fig. 8). Some distinct features can be seen in the spatial maps for wc: 577 

i.) On the surface (5 cm soil depth), wc for areas with higher canopy cover (i.e., evergreen trees) is slightly 578 
higher compared to non- and sparsely-vegetated areas.    579 

ii.) For all other soil depths, wc under green canopies is lower compared to non- and sparsely-vegetated 580 
areas. 581 

iii.) In the eastern and south-eastern part of the study area, wc in 10 cm, 20 cm and 50 cm is higher 582 
compared to the rest of the study area despite high canopy cover. This part of the study area is bordering 583 
the plant nursery of EEFH (southeast) and is close to the water tower of EEFH (northeast). 584 

iv.) Water availability at greater depths (100 cm) is higher in areas with low canopy cover (i.e., deciduous 585 
trees).   586 



 587 
Figure 8: Plot-scale soil water content spatial distribution for each depth (5 cm, 10 cm, 20 cm, 50 cm and 588 
100 cm). 589 

3.4.3 Deuterium (𝛿𝛿2H), oxygen-18 (𝛿𝛿18O) and lc-excess isoscapes 590 

The spatial patterns of 𝛿𝛿2H and 𝛿𝛿18O agree well for all depths. At the surface (5 cm soil depth), 591 
interpolated isotope values are more enriched in areas with lower canopy cover (areas with deciduous 592 
trees) compared to the areas with a higher canopy cover at the peak of the dry season (areas with 593 
evergreen trees). The spatial variability of surface water isotope values can be expressed in terms of the 10 594 
% (Q10) and 90 % (Q90) quantiles of the spatial histogram, which were both calculated in GIS using the 595 
R.quantile function. Surface water isotopes (5 cm soil depth) spatially vary between -33.0 ‰ and -55.2 ‰ 596 
for 𝛿𝛿2H and between -1.8 ‰ and -4.5 ‰ for 𝛿𝛿18O for non-vegetated vs. dense cover, respectively. The 597 
resulting interquantile ranges (IQR) are 22.2 ‰ for 𝛿𝛿2H and 2.7 for 𝛿𝛿18O, respectively. In the 10 cm and 598 
20 cm soil depths, however, greatest isotope enrichment is observed in areas with higher canopy cover for 599 
both 𝛿𝛿2H and 𝛿𝛿18O as compared to non- or sparsely vegetated areas (Fig. 9 and 10, refer to discussion). 600 
The spatial variability of the interpolated water isotopes for 10 cm depth is -35.4 ‰ to -79.0 ‰ for 𝛿𝛿2H 601 
(IQR=43.6 ‰) and 0.8 ‰ to -9.7 ‰ for 𝛿𝛿18O (IQR=10.5 ‰) for non-vegetated vs. dense cover, 602 
respectively. In 20 cm Q10, Q95 and IQR for 𝛿𝛿2H are -66.1 ‰, -74.9 ‰, and 8.8 ‰, respectively. For 603 
𝛿𝛿18O in 20 cm depth values for Q10, Q95 and IQR are -6.6 ‰, -13.6 ‰, and 7 ‰, respectively. The 604 



observed patterns coincide with the pattern observed in water contents – higher at the surface and lower in 605 
10 cm and 20 cm depths for vegetated vs. non-vegetated – lower water contents calculated for these soil 606 
depths (Fig. 5) In the deeper soil layers (50 cm and 100 cm, respectively), areas with dense vegetation 607 
cover show the most depleted soil water isotope values and non- or sparsely-vegetated regions are more 608 
enriched, comparably (50 cm 𝛿𝛿18O: Q90 = -8.6 ‰, Q10 = -11.0 ‰, IQR = 2.4 ‰; 50 cm 𝛿𝛿2H: Q90 = -70.8 609 
‰, Q10 = -81.9 ‰, IQR = 11.1 ‰; 100 cm 𝛿𝛿18O: Q90 = -7.9 ‰, Q10 = -11.0 ‰, IQR = 3.1 ‰; 100 cm 610 
𝛿𝛿2H: Q90 = -59.7 ‰, Q10 = -77.7 ‰, IQR = 18 ‰). 611 

In summary, the spatial variability of the interpolated soil water isotopes is greatest in the uppermost soil 612 
layers (5 cm and 10 cm, respectively) and comparably lower in deeper soil layers. However, the spatial 613 
variability is also relatively high for 𝛿𝛿2H in 100 cm soil depth.    614 

 615 
Figure 9: Plot-scale soil water δ2H isoscapes for each depth (5 cm, 10 cm, 20 cm, 50 cm and 100 cm) in 616 
contrast to point-scale xylem water isotope composition. Note that the xylem samples are grouped 617 
according to major species and reflect the isotope signature with the respective color. 618 



 619 
Figure 10: Plot-scale soil water δ18O isoscapes for each depth (5 cm, 10 cm, 20 cm, 50 cm and 100 cm) in 620 
contrast to point-scale xylem water isotope composition. Note that the xylem samples are grouped 621 
according to major species and reflect the isotope signature with the respective color. 622 

The calculated lc-excess (lc) (Fig. 11) illustrates the relationships between 𝛿𝛿2H and 𝛿𝛿18O and is important 623 
for validating the interpolated patterns of these isotopes. Lowest values for lc (=higher degree of 624 
evaporative enrichment) are observed for the uppermost soil layers (5 cm and 10 cm, respectively). 625 
Consistent with the patterns for the individual isotopes, lc in 5 cm depth is lower where canopy cover is 626 
low and higher where canopy cover is higher. At 10 cm soil depth, this pattern is switched around (see 627 
discussion). Deeper than 10 cm, the greener areas coincide with greater values for lc compared to the non-628 
or sparsely-vegetated areas. 629 



 630 
Figure 11: Plot-scale soil water lc-excess isoscapes for each depth (5 cm, 10 cm, 20 cm, 50 cm and 100 631 
cm) in contrast to point-scale xylem water isotope composition. Note that the xylem samples are grouped 632 
according to major species and reflect the isotope signature with the respective color. 633 

Spatial patterns visible close to the surface at 5 cm depths. The non-green vegetation dominated parts of 634 
the plot exhibit higher fractionation with more enriched soil isotopes. From 20 cm depth downwards the 635 
spatial picture is more homogeneous and falls in line with xylem isotope signatures. 636 

4 Discussion  637 

4.1 Plot-scale soil and plant water isotope patterns 638 

Water isotope values of both soil and plants show a large spatial heterogeneity (Fig. 2 and 3). Soil water 639 
isotope profiles exhibited substantial variability not only on the soil surface, where fractionation due to 640 
evaporation occurs, but – despite decreasing with depth – also in deeper soil layers (see Table 3). This is 641 
surprising, because soil water isotope values tend to become more homogenous at depth due to mixing and 642 
longer water residence times. The observed spatial differences suggest that at the study site and the point 643 
in time sampled (approx. three months after end of the rainy season), this mixing has not, or not fully 644 
occurred until the maximum depth sampled and plot-specific influencing factors are preserved in the depth 645 
profiles. These plot-specific factors are most likely differences in the composition of plants, canopy cover 646 
and soil texture (refer to Appendix 1). The lc-excess (Fig. 2d and Table 3) does not reach zero even at 647 
depth, i.e., isotopic fractionation is present at all depths and does not diminish. This can mean: either, 648 



precipitation was subject to isotopic fractionation, or, the influence of evaporation reaches deep into the 649 
soil. Indeed, relative humidity of the atmosphere decreases towards the end of the rainy season and is 650 
generally low in the dry season while temperatures reach values of 40 °C and above daily. Fractionation 651 
post sampling can be excluded, as samples were stored in a dark, cool place in evaporation-tight 652 
headspace bottles and additionally packed into aluminum bags, which have been extensively reviewed and 653 
approved (Gralher et al., 2021). The Ic-excess of precipitation was on average -0.1 at the end of the rainy 654 
season (data not shown here, but see Fig.3) indicating that the fractionation of soil water isotopes must 655 
have occurred in the soil. The low water contents observed in situ further support this idea, even if 656 
evapotranspiration affected them. If water contents are already low (via transpiration), even small 657 
evaporative influence can cause substantial fractionation. Furthermore, the soils are clayey loams 658 
(Vertisol) and the observed cracks in the soil allow for deeper evaporation. 659 
Analyzing the dual-isotope plot (Fig. 3) sheds further light on the water relationships. Soil water isotopes 660 
plot along an evaporation line with a slope of 3.6, with the greatest degree of fractionation in the 661 
uppermost soil depths. The evaporation line through the mean of all soil depth profiles intersects with the 662 
LMWL at the position where the isotopically more depleted late rainy-season rainfall plots; this indicates 663 
that this water was the main water source for evaporation for all depths other than 150 cm, which plots 664 
closer to the LMWL and off the soil water evaporation line. Thus, this water is not as strongly influenced 665 
by late-season rainfall compared to all other depths. The deep soil water isotope values likely represent a 666 
mixture of core rainy season and late-season rainfall that has started to evaporate. Mixing or influence of 667 
groundwater can be excluded for this depth with a groundwater table at around 30 m depth. The water 668 
used by plants varies greatly amongst the investigated trees and plots along an evaporation line with a 669 
slope similar to the soil samples analyzed. The large variation (refer to Appendix D for a dual-isotope plot 670 
containing all individual tree xylem samples) can be explained by i.) spatial heterogeneity, ii.) inter-671 
species (e.g., evergreen vs. deciduous) and iii.) intra-species heterogeneity. When plotting the mean xylem 672 
water isotope values for evergreen and deciduous trees, respectively, it is obvious that evergreen trees 673 
have a more enriched xylem water. In contrast, mean deciduous trees’ isotope values plot closer to the 674 
LMWL. This seems counterintuitive at first due to the fact that we expect the evergreen trees to be the 675 
potentially deep-rooting trees. Examining the isotope data of the individual trees (Appendix D), it 676 
becomes evident that many of the deciduous trees either cluster around the late-season rainfall or near the 677 
shallower soil water isotope values. Hence, simply using the mean isotope value is misleading. Rather, the 678 
group of deciduous trees clustering around late-season rainfall stopped transpiring relatively early into the 679 
dry season, shed its leaves and somehow ‘preserved’ the late-season rainfall isotope signature. Storage of 680 
water tree trunks is a well-known and documented water use strategy of dry forest trees (e.g., Hasselquist 681 
et al., 2010). The other group within the deciduous trees continues using shallow soil water until the plant 682 
water potential threshold for water extraction for the particular species is reached; an example of this are 683 



S. macrophylla and A. graveolens trees, respectively, which drop their leaves only late into the dry season. 684 
Alternatively, the highly enriched values encountered in some of the deciduous trees might also indicate 685 
evaporation of stored water inside the stem (some of the sampled trees were already leafless). The 686 
evergreen trees tend to plot further away from the late-season rainfall isotope values and mostly in 687 
between the soil evaporation line and the LMWL. The isotope values of evergreen trees indeed do show a 688 
more enriched water isotope signal, however, we believe that this isotope signal is not resulting from 689 
shallow water uptake but rather a mixture of water originating from late season rainfall (September to 690 
December), comparably more enriched rainfall from the period between the two rainfall peaks (July and 691 
August, respectively) and fractionated shallow soil water (Ricardo Sanchez-Murillo, pers. 692 
communication). In the soil excavation at four selected plots within the study area revealed the presence of 693 
deep roots down to 200 cm soil depth for all selected species. However, it was not possible to excavate tap 694 
roots. Due to the low soil water contents in the shallow subsurface (up to 150 cm) at the time of 695 
measurements, it is very likely that deeper perched water was the source for many evergreen trees. For 696 
instance, Kühnhammer et al. (2021) demonstrated with an artificial labeling experiment that S. capiri 697 
barely takes up shallow soil water at the end of the dry season, while maintaining transpiration 698 
(Kühnhammer et al., 2023). Both observations point toward the capability of deep roots. Again, many 699 
different evergreen species were sampled at different locations and a more detailed analysis of water 700 
uptake depths could shed further light on the individual strategies; however, this is not the main focus 701 
here.  702 

4.2 Spatial relationships of soil water isotope values with UAV-derived surface 703 

temperature and vegetation indices (VI) 704 

4.2.1 Soil water content and isotopes vs. surface temperature 705 

We test if the following chain of evidence is true in heterogeneous environments: a higher degree of 706 
canopy cover causes lower soil surface temperature below that canopy, and this causes less soil water 707 
isotope fractionation. The opposite would be true for deciduous canopy trees with no leaves during the dry 708 
season. The evidence we present in Fig. 4 and 5, as well as Table 4, support this hypothesis. Both 𝛿𝛿2H and 709 
𝛿𝛿18O correlate well (0.65 and 0.57, respectively) with the UAV-based estimated soil surface temperature. 710 
The replicated sampling of the soil pixels from the final surface temperature images provided a reliable 711 
measure of soil temperature below the canopies (Gerchow et al., under review); however, some 712 
uncertainties remain related to the exact temperature below one canopy, as the extraction of soil 713 
temperatures from above requires some openness in the trees’ canopy. The clear correlation of both water 714 
isotopes with the surface temperature of the uppermost soil depth proves that the hypothesis holds true 715 
even in heterogeneous environments. A low correlation (R² of 0.14 for 𝛿𝛿18O, 0.13 for 𝛿𝛿2H and 0.16 for lc-716 



excess, respectively; Table 3) between soil surface temperature and water isotope values at 10 cm soil 717 
depth persists, but no relationship is found deeper than that. Surface temperature seems to affect 718 
fractionation mainly in the uppermost 10 cm pointing towards a rather clayey soil, where the zero-flux 719 
plane is located at shallower depths. Indeed, clay contents at the soil surface range between 30 and 50 % 720 
clay and five out of ten of the samples taken for soil texture are classified as clay soils; the remainders are 721 
either silty clay-loam or silt soils (see Appendix 1). The relationship between surface temperature and 722 
isotope fractionation at the soil surface shows that even under steady climatic conditions spatial isotope 723 
heterogeneity exists. In other words, there is no diffusive homogenization of isotope values as it would 724 
occur in deep soil due to diffusion and mixing (e.g., Beyer et al., 2016). Depending on the canopy cover, 725 
the soil is subject to spatially variable radiation and surface roughness. Both the thermal images and soil 726 
depth profiles were taken at midday, i.e., when sun angle was close to 90° above the forest; hence, at the 727 
time of maximum exposition to radiation. Under these extreme temperatures at the non-shaded parts of the 728 
study area, it is very likely that an increased fractionation occurs even at such low water contents.  729 

4.2.2 Soil water content and isotopes vs. vegetation indices 730 

In contrast to surface temperature, which seems to affect only the uppermost soil layers for both soil water 731 
content and isotope values, the calculated VI show relatively good correlations for all soil depths. Most 732 
likely, this is because of the connection of canopy processes (transpiration) and root water uptake: If a 733 
canopy is green in the middle of the dry season, there must be water uptake at some depth reflected in the 734 
VI. Hence, a relationship of canopy parameters reflected in the VI with soil water content throughout the 735 
soil profile seems logical. Explaining the observed correlations for all depths for the soil water isotopes is 736 
more complicated. Most likely, the reason for the observed relationships is the spatial heterogeneity in 737 
rooting patterns, throughfall and infiltration combined with lower evaporation rates under dense canopies.  738 

As shown in Table 4, there is not one VI that correlates best with all soil depths and all parameters. 739 
However, the highest correlations for all depths are found with four of the investigated VI, namely, RTVI, 740 
SREVI, NDVI and the individual bands of CIR. For depths greater than 5 cm, RTVI and CIR are most 741 
related to both soil water content and isotope values. We suspect that the proven relationship between soil 742 
temperature and soil water isotopes at 5 cm depth is related to this; NDVI is the VI related most to leaf 743 
biomass and ultimately, leaf biomass affects soil temperature. This is further supported by the fact that 744 
water content, where no relationship between soil temperature and top 5 cm isotope values was found, 745 
does also not relate best for this depth (instead, it is SREVI). At the deeper soil depths, RTVI and the 746 
individual bands of CIR correlate best with the observed spatial soil water isotope patterns. Both of those 747 
have a strong emphasis on the near-infrared band (compare section 2.3.2 and Appendix B), which enables 748 
them to differentiate not only between biomass and no biomass, but also between less and more stressed 749 
vegetation. The information whether vegetation is stressed or not stressed in turn is linked to belowground 750 



processes, in particular root water uptake. The suitability of those for explaining the soil water 751 
relationships with those VI can particularly attributed to this fact. For water content, this relationship 752 
expresses the following: the higher the vegetation health (higher RTVI), the lower the water content (refer 753 
to Table 4). For soil water isotopes, however, a number of anomalies are revealed: at 10 cm depth, the 754 
correlation analysis suggests that the higher the RTVI, the greater soil water enrichment is for both 𝛿𝛿2H 755 
and 𝛿𝛿18O. One possible explanation for this relationship could be the presence of root water uptake in the 756 
upper 10 cm, which might be expected for the trees still transpiring. If this water uptake depletes the soil 757 
moisture severely, then fractionation processes due to evaporation would affect the soil water isotopes 758 
stronger, especially when it is closer to the surface. Indeed, the dual-isotope plot (Fig. 3) suggests that 759 
water uptake of the evergreen trees occurs between 10 and 20 cm soil depth. The presence of water uptake 760 
by evergreen vegetation is further supported by the water potential measured for the trees every three days 761 
(refer to (Holbrook, 2011). Measurements of water potential of the leaves revealed values up to -3.5 MPa 762 
for S. capiri, -2.8 MPa for S. macrophylla and A. graveolens, -1.7 MPa for G. ulmifolia and -2.3 MPa for 763 
H. courbaril were measured during the field campaign (maximum values of diurnal cycles taken at several 764 
dates in the dry season, data not shown here). The values for the evergreen species S. capiri exceed 765 
permanent wilting point (-1.5 MPa to -2.0 MPa) substantially, but also the few individual deciduous trees 766 
that still had leaves (S. macrophylla and A. graveolens) and the evergreen species H. courbaril clearly 767 
exceed permanent wilting point. Only for G. ulmifolia trees, the leaf water potential equals permanent 768 
wilting point. The fact that water potential values of most trees exceed permanent wilting point explains 769 
the extremely low water contents throughout the soil profiles. It also explains the lowest water contents 770 
observed at 10 cm soil depth for the trees that still transpire, of which most were S. capiri trees. This, in 771 
combination with the abovementioned exposition of the 10 cm soil depth to evaporation explains the 772 
relationships we found. For depths deeper than 10 cm, the direction of correlation for the soil water 773 
isotopes changes: the higher RTVI or CIR, respectively (i.e., the healthier/less stressed), the lower (more 774 
depleted) the soil water isotope values and the lower soil water content. Water infiltrating deeper generally 775 
is less enriched because the influence of evaporation decreases with soil depth. However, this does not 776 
explain the greater enrichment where less canopy cover and less healthy vegetation are present. The only 777 
explanation for these differences can be the different ecohydrological behavior of deciduous trees 778 
compared to evergreen trees. With the existing data, however, we can only speculate on the specific 779 
controls. Most likely, the observed patterns are legacy effects of antecedent rain, i.e., the isotope 780 
differences at depths reflect preferential infiltration of evergreen vs. deciduous vegetation. In labeling 781 
experiments, Kühnhammer et al. (2021) irrigated plots dominated by S. macrophylla and S. capiri, 782 
respectively, with isotopically enriched water and found both different infiltration and water uptake 783 
patterns between the deciduous and evergreen species. The evergreen species did not take up the labelled 784 
water, whereas the deciduous tree species started transpiring the tracer immediately. Such differences 785 



might lead to different water infiltration patterns and exposition of infiltrating water to evaporation. If 786 
during the rainy season more water is taken up in the shallow root zone of deciduous vegetation, water 787 
infiltration occurs slower (wetter soils have a higher hydraulic conductivity and vice versa) and the 788 
exposition to evaporation is longer and hence, isotopic fractionation is greater in contrast to areas where 789 
deeper rooting trees are located. Another explanation could be the effect of interception. Fischer-Bedtke et 790 
al. (2023) and Rodrigues et al. (2022), amongst others, have demonstrated that canopies change 791 
throughfall with spots receiving more and less water.  792 

4.3 Soil water isoscapes 793 

The soil water isoscapes were developed for most soil water content and soil water isotope profiles with 794 
EDK using the best-correlated VI. In some cases, however, linear regression showed a superior 795 
performance. Overall, the spatial validation was robust (see Table 5) and created the baseline for 796 
generating the isoscapes. All generated soil water isoscapes generally reveal a substantial difference 797 
between areas with higher (evergreen vegetation) and lower (deciduous trees) canopy cover as well as 798 
bare soil. The visualization as spatial map allows for a spatial interpretation of processes.  799 

Soil water content spatial distributions show the severity of the dry season impact throughout the soil 800 
column. The soil surface (5 cm depth) is completely dried out due to evaporation; however, slightly higher 801 
water content is present in areas where green canopies are present. However, this cannot be explained with 802 
different soil temperature, because those were not related to soil water content in 5 cm depth (Table 4). 803 
Possible other explanations of the observed patterns might be hydraulic redistribution translocating water 804 
vertically (e.g., Prieto et al., 2012, Prieto & Ryel, 2014), a difference in soil texture, the litter layer or a 805 
higher relative humidity in areas with higher canopy cover. With the data and background information, 806 
hydraulic redistribution to the top surface can be excluded as there were no visible roots in the first 5 cm 807 
throughout the site. Soil texture between plots where canopy cover was greater compared to plots without 808 
canopy cover was indeed different, and clay content was higher for the former. It might be that throughout 809 
the study area, water contents are at permanent wilting point but slightly different due to texture 810 
differences. In 10 to 50 cm soil depth, spatial differences are much more pronounced (Fig. 8). Soil water 811 
contents are much lower, where more canopy cover is present. The most likely explanation is that water 812 
contents here are severely lowered via root water uptake of the evergreen vegetation. The dual isotope plot 813 
provided in Fig. 3 supports this as the evergreen xylem water isotopes plot in between the soil water 814 
isotope values for 10 and 20 cm. Another pattern that the soil water map shows is the elevated water 815 
contents in the east and south of the study area potentially caused by the (leaking) domestic water supply 816 
tower of the station (in the east) and a frequently irrigated plant nursery (in the east/southeast) located (not 817 
shown here) adjacent to the study site. In the deeper soil (> 100 cm), depletion of water content and 818 



presence of green vegetation are inevitably connected, vice versa, soil water contents are higher where no 819 
canopy cover is present. Notably, the effect of the adjacent water tower and irrigated plant nursery are not 820 
visible in the deeper soil, suggesting either that this water is used up immediately in the upper soil layers 821 
and does not infiltrate deeper or that water initially infiltrated deeper during the rainy season but was used 822 
up by vegetation; during the dry season water does not infiltrate deeper anymore here. The depletion in 823 
soil water content is severe, where vegetation exists; the dual isotope plot (Fig. 3) further suggests that this 824 
deeper water is not used at the point in time the samples were taken. The most likely explanation for this is 825 
that due to texture differences between the surface and deeper subsurface (decreasing clay content and 826 
increasing sand content with depth, data not shown here), more water is plant-available in the upper soil 827 
layers.  828 

The spatial patterns of the soil water isotope profiles (Fig. 9 and 10) support the patterns found for water 829 
content. On the soil surface, isotope values are more depleted under the evergreen vegetation compared to 830 
the bare soil or areas with little canopy cover. The relationship between surface temperature and isotope 831 
values explains this. In the 10 cm soil depth, however, isotope values under the evergreen are more 832 
enriched. This is in line with lower water contents at these depths (Fig. 5) and the water uptake depths 833 
inferred from Fig. 3. A potential explanation is that due to the low water contents in this depth, small 834 
quantitative amounts of evaporation cause stronger fractionation. From 20 cm to 100 cm soil depth, soil 835 
water isotope values under evergreen canopies this pattern is reversed again, i.e., isotope values are more 836 
depleted. We interpret this as a reflection of the different rainfall pulses (more depleted in May to June), 837 
more enriched during mid-summer (July to August) and more depleted from September to October and 838 
respective different travel times for these wetting fronts. Likely, preferential infiltration also might be 839 
relevant. Moreover, hydraulic redistribution could be an explanation: If evergreen trees had access to 840 
deeper-seated water via tap roots (this was not investigated here), a redistribution of water from deep to 841 
shallower soil layers is possible. Indeed, the S. capiri tree, known as ‘guardian of the river’ locally, is 842 
believed to have deep tap roots. From an ecohydrological perspective, the H. courbaril tree is similar to S. 843 
capiri in many ways and hydraulic redistribution is possible for both species. However, the dual isotope 844 
plot (Fig. 3) does not clearly indicate this. The fact that the evergreen trees plot slightly off the soil 845 
evaporation line and close to the groundwater and mean rainfall values might be interpreted as supporting 846 
evidence. From a theoretical perspective, redistribution to the 10 cm soil depth, where soils water content 847 
is the lowest and thus, soil water potential is likely the greatest, would be more logical if roots are present. 848 
The present dataset cannot fully answer this; hence, further research on this is required. Finally, lc-excess 849 
(Fig. 11) was calculated in order to validate the interpolated isoscapes further. Clear spatial patterns, both 850 
laterally and vertically, are visible. The relationships explained before are also revealed in lc-excess: 851 
higher evaporation influence at the soil surface for bare soil areas, higher isotope fractionation und 852 
evergreen canopies at 10 cm depth; and less evaporative influence (higher lc-excess) in areas with high 853 



canopy cover and near the water tower. In summary, the interpolated spatial patterns of soil water isotopes 854 
seem logic and allow for a spatial interpretation; however, a further verification of the interpreted findings 855 
would increase confidence in the spatial relationships and implications for root water uptake.  856 

4.4 Consequences for water uptake depth estimations 857 

Spatial differences of soil water isotope patterns are rarely considered when assessing root water uptake 858 
depth of vegetation or the separation of evapotranspiration into its components. Commonly, one or a few 859 
soil water isotope depth profiles are collected and those are used as source water characterization which is 860 
then compared with the xylem water isotope values. The existence of distinct spatial patterns puts question 861 
marks on this approach; at minimum, it results in an increased uncertainty of root water uptake depth 862 
estimations (refer to Beyer & Penna, 2021). It should be noted, however, that the depicted scenario here is 863 
a snapshot of an environment with extreme differences between wet and dry season causing a severe 864 
heterogeneity in vegetation. The soil water depth profiles shown here were collected at the peak of the dry 865 
season, where these differences would be expected to be the highest. While we could show that substantial 866 
heterogeneity of soil water isotopes exists in such environments, this needs to be investigated for other 867 
settings and temporally higher resolutions. Goldsmith et al. (2019) showed that heterogeneity also exists 868 
during wet periods, and existing studies on the spatial effect of throughfall variations (e.g., Fischer-Bedtke 869 
et al., 2023; Rodrigues et al., 2022) support this notion. But it seems simply not practical to carry out an 870 
extensive destructive sampling as demonstrated here (i.e., the transect soil water isotope sampling or the 871 
sampling design carried out in Goldsmith et al., 2019), especially if additional data is required (UAV 872 
overflights) for many points in time. Nevertheless, we believe that this study is a significant step ahead 873 
towards showing that isoscapes taking into account spatial variability at a high resolution can provide a 874 
more detailed and distributed picture of root water uptake depths. Theoretically, one could extract soil 875 
water isotope profile data from the generated isoscapes on a pixel basis (for each tree/canopy) and 876 
estimate water uptake depths individually and this might result in a more realistic view of water uptake 877 
depth distributions. However, cost and benefit of such an analysis would need to be evaluated, as heavy 878 
sampling efforts at multiple times would be required. In addition, uncertainty is introduced due to the data 879 
processing steps (e.g., the interpolations). Rather, this study should be seen as a proof that spatial aspects 880 
need to be considered when doing such analyses, and people need to be aware of that. Likewise, the effect 881 
of canopy structure and cover on the isotope values of the soil surface needs to be considered in field 882 
studies (i.e., for sampling design). For ecohydrological studies utilizing soil and plant water isotope data, 883 
we recommend based on the findings of this study: i.) that always, more than one soil water isotope depth 884 
profile is sampled when assessing water sources for tree transpiration; ii.), that the number and location of 885 
these profiles should be determined by considering spatial patterns of vegetation and canopies – general 886 



patterns can be easily obtained these days by freely available satellite imagery and/or UAV overflights. 887 
iii.) Based on our results, heterogeneity might be relevant on a spatial resolution as small as 0.5 m: we 888 
interpret this because the highest correlations with UAV-borne VI were found for this spatial resolution; 889 
however, it is not clear, if this can be transferred to other environment and settings. Finally, iv) 890 
incorporating spatial aspects into ecohydrological studies will likely increase uncertainties of water uptake 891 
depth estimations, for instance, but seem inevitable given the natural heterogeneity that has been ignored 892 
largely in the past. 893 

5 Conclusion 894 

Using a unique data set, we tested the following hypothesis: due to the cooling effect of tree canopies, 895 
which in turn causes different soil temperatures in heterogeneous areas, spatial differences in isotope 896 
fractionation exist. UAV-derived soil surface temperature correlate well with isotopic enrichment on the 897 
soil surface (i.e., higher isotope enrichment/fractionation with higher soil temperatures) supporting the 898 
hypothesis. This correlation decreases rapidly with increasing soil depth and diminishes in 20 cm below 899 
surface. Without doubt, we were able to show here that canopy structure and the ‘degree of greenness’ 900 
(VI) do affect soil water isotopes under steady-state dry conditions: Higher ‘degree of greenness’ causes 901 
lower soil temperature and less isotopic enrichment.  902 

This work further highlights the challenges but also opportunities and importance of generating soil water 903 
isoscapes. It clearly shows that we need to provide some spatial representation of soil water isotope data 904 
when investigating root water uptake depths. Even though we analyzed relationships between UAV-905 
derived VI and soil water content and isotope data, the potential of UAVs could be assessed under non-906 
stationary conditions (e.g., during the wet season). We further found for each soil depth acceptable 907 
correlations between both soil water content and the soil water isotope values enabling a reliable and 908 
novel generation of high resolution soil water isoscapes. The spatial patterns of these isoscapes were 909 
discussed and reasonable explanation found. From the interpolated isoscapes, lc-excess was calculated 910 
which also resulted in reasonable ranges. Hence, we believe that implementing a UAV-based interpolation 911 
scheme might help to interpret spatial soil-plant relationships better. The inclusion of the spatial 912 
heterogeneity of soil water isotopes into mixing models will require careful consideration of water uptake 913 
depth uncertainty. The individual depth-relationships that can be utilized for a better understanding of 914 
spatial soil water isotope patterns. Transforming the dry season snapshot into temporally dynamic 915 
relationships could be an insightful future research avenue. Likewise, the dataset presented here could be 916 
valuable for testing and improving isotope-enabled SPAC models and rigorous process-studies (e.g., 917 
modeling the spatial patterns of soil water isotope enrichment). In essence, we conclude that spatial 918 
aspects should be considered in such analyses and – at minimum – researchers should be aware of that. 919 
For ecohydrological studies utilizing soil and plant water isotope data, we recommend based on the 920 



findings of this study: i.) that more than one soil water isotope depth profile is sampled when assessing 921 
water sources for tree transpiration; ii.), that the number and location of these profiles should be 922 
determined by considering spatial patterns of vegetation (e.g., via pre-investigations of satellite data or 923 
UAV-flights).  924 
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Appendices 1129 

Appendix A: Soil properties and characteristics 1130 

soil depth % sand % silt % clay pH % org. C texture 
plot 1 

10 cm 
30 cm 
50 cm 
70 cm 

 
37.4 
40.2 
44.2 
- 

 
33.1 
29.8 
29.9 
- 

 
29.5 
30.0 
25.9 
- 

 
- 
- 
- 
- 

 
2.9 
1.1 
1.1 
- 

 
clay loam 
clay loam 
clay loam 
- 

plot 2 
10 cm 
30 cm 
50 cm 
70 cm 

 
35.8 
34.2 
52.1 
- 

 
33.9 
31.7 
22.3 
- 

 
30.2 
34.2 
25.6 
- 

 
- 
- 
- 
- 

 
2.9 
0.4 
0.2 
0.1 

 
clay loam 
clay loam 
sandy clay loam 
-  

plot 3 
10 cm 
30 cm 
50 cm 
70 cm 

 
- 
53.6  
63.6  
63.6  

 
- 
16 
16 
14 

 
- 
30.4 
20.4 
22.4 

 
- 
6.6 
6.1 
5.9 

 
4.0 
2.7 
1.3 
0.4 

 
 
sandy loam 
sandy loam 
sandy loam 

plot 4 
10 cm 
30 cm 
50 cm 
70 cm 

 
25.8 
38.8 
31.0 
25.8 

 
33.8 
33.8 
36.4 
41.6 

 
40.4 
27.4 
32.6 
32.6 

 
6.8 
6.9 
6.8 
6.5 

 
1.3 
0.9 
0.9 
0.9 

 
clay 
clayey loam 
clayey loam 
clayey loam 

plot 5 
10 cm 
30 cm 
50 cm 
70 cm 

 
25.8 
23.2 
41.4 
44.0 

 
33.8 
28.6 
31.2 
33.8 

 
40.4 
48.4 
27.4 
22.2 

 
6.4 
6.8 
6.7 
6.8 

 
0.8 
0.9 
0.9 
0.5 

 
clay 
clayey loam 
clay 
clay 

plot 6 
10 cm 
30 cm 
50 cm 
70 cm 

 
18.0 
15.4 
7.6 
20.6 

 
44.2 
46.8 
33.8 
39.0 

 
37.8 
37.8 
58.6 
40.4 

 
6.7 
6.8 
6.7 
7.0 

 
- 
- 
- 
- 

 
silty clay loam 
silty clay loam 
clay 
clay 

plot 7 
10 cm 
30 cm 
50 cm 
70 cm 

 
10.2 
0 
12.8 
0 

 
42.9 
28.4 
2.6 
25.8 

 
46.9 
71.6 
84.6 
74.2 

 
6.3 
6.5 
6.8 
6.8 

 
- 
- 
- 
- 

 
clay 
clay 
clay 
clay 

plot8 
10 cm 
30 cm 
50 cm 
70 cm 

 
36.6 
36.6 
43.1 
46.3 

 
45.5 
29.3 
32.5 
29.3 

 
18.0 
34.2 
24.5 
24.5 

 
7.0 
6.9 
5.6 
6.6 

 
- 
- 
- 
- 

 
loam 
clayey loam 
loam 
loam 

plot 9 
10 cm 
30 cm 
50 cm 
70 cm 

 
- 
59.6  
75.6  
65.6  

 
- 
14 
12 
14 

 
- 
26.4 
12.4 
20.4 

 
- 
6.3 
6.2 
6.5 

 
- 
1.9 
0.7 
0.1 

 
 
sandy loam 
sandy loam 
sandy loam 

plot 10       



10 cm 
30 cm 
50 cm 
70 cm 

33.3 
39.8 
69.1 
78.8 

35.7 
32.5 
22.7 
19.5 

31.0 
27.7 
8.2 
1.7 

7.0 
7.2 
7.39 
7.2 

- 
- 
- 
- 

clayey loam 
clayey loam 
sandy loam 
loamy sand 

 1131 

Appendix B: Calculation formulas of Vegetation Indices (VI) 1132 

VI Name of VI Calculation formula*,** 

NDVI Normalized Difference 

Vegetation Index 

𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝑟𝑟𝑟𝑟𝑑𝑑668
𝑛𝑛𝑛𝑛𝑟𝑟842 + 𝑟𝑟𝑟𝑟𝑑𝑑668

 

OSAVI optimized Soil-Adjusted 

Vegetation Index 

𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝑟𝑟𝑟𝑟𝑑𝑑668
𝑛𝑛𝑛𝑛𝑟𝑟842 + 𝑟𝑟𝑟𝑟𝑑𝑑668 + 0,16

 

EVI Enhanced Vegetation Index 
2,5 ∗

𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝑟𝑟𝑟𝑟𝑑𝑑668
𝑛𝑛𝑛𝑛𝑟𝑟842 + 6 ∗ 𝑟𝑟𝑟𝑟𝑑𝑑668 − 7,5 ∗ 𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢444 + 1

 

EVI2 Enhanced Vegetation Index 2 
2,5 ∗

𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝑟𝑟𝑟𝑟𝑑𝑑668
𝑛𝑛𝑛𝑛𝑟𝑟842 + 2,4 ∗ 𝑟𝑟𝑟𝑟𝑑𝑑668 + 1

 

CIR (CIR1, 

CIR2, CIR3) 

Color Infrared Image no index in strict sense, contains three bands which 

are combined to generate a color image: near-infrared 

( CIR1 - 𝑛𝑛𝑛𝑛𝑟𝑟842), green light reflectance (CIR2 - 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛560) and red light reflectance (CIR - 𝑟𝑟𝑟𝑟𝑑𝑑668) 

NDRE Normalized Difference 

NIR/Rededge Normalized 

Difference Red-Edge 

𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒717
𝑛𝑛𝑛𝑛𝑟𝑟842 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒717

 

CI_Green Chlorophyll Index Green 𝑛𝑛𝑛𝑛𝑟𝑟842
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛560

− 1 

CI_Edge Chlorophyll Index Red-Edge 𝑛𝑛𝑛𝑛𝑟𝑟842
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒717

− 1 

MTCI MERIS Terrestrial chlorophyll 

index 

𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒717
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒717 + 𝑟𝑟𝑟𝑟𝑑𝑑668

 

RTVI Red-Edge Triangulated 

Vegetation Index 

100 ∗ (𝑛𝑛𝑛𝑛𝑟𝑟842 − 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒717) 

−10 ∗ (𝑛𝑛𝑛𝑛𝑟𝑟842 + 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛560) 
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Appendix C: Spearman matrices for all individual depths 1134 

a) 5 cm soil depth 1135 

 1136 

  1137 

TGI Triangular Greenness Index −0,5 ∗ (((668− 475) ∗ (𝑟𝑟𝑟𝑟𝑑𝑑668 − 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑛𝑛560)) 

−((668− 560) ∗ (𝑟𝑟𝑟𝑟𝑑𝑑668 − 𝑏𝑏𝑏𝑏𝑢𝑢𝑢𝑢475))) 



b) 10 cm soil depth 1138 

 1139 

  1140 



c) 20 cm soil depth 1141 

 1142 

  1143 



d) 50 cm soil depth 1144 

 1145 

  1146 



e) 100 cm soil depth 1147 

 1148 



Appendix D: Detailed Dual-Isotope Plot containing all individual tree xylem, soil and rainfall 1149 

samples 1150 

 1151 

 1152 


