References
Alglave, B., Rivot, E., Etienne, M.-P., Woillez, M., Thorson, J.T.,
Vermard, Y., 2022. Combining scientific survey and commercial catch data
to map fish distribution. ICES Journal of Marine Science fsac032.
https://doi.org/10.1093/icesjms/fsac032
Alglave, B., Vermard, Y., Rivot, E., Etienne, M.-P., Woillez, M., 2023.
Identifying mature fish aggregation areas during spawning season by
combining catch declarations and scientific survey data. Canadian
Journal of Fisheries and Aquatic Sciences.
Alvarez, P., Fives, J., Motos, L., Santos, M., 2004. Distribution and
abundance of European hake Merluccius merluccius (L.), eggs and larvae
in the North East Atlantic waters in 1995 and 1998 in relation to
hydrographic conditions. Journal of Plankton Research 26, 811–826.
Arbault, P.S., Camus, P., le Bec, C., 1986. Estimation du stock de sole
(Solea vulgaris, Quensel 1806) dans le Golfe de Gascogne à partir de la
production d’œufs. Journal of Applied Ichthyology 2, 145–156.
https://doi.org/10.1111/j.1439-0426.1986.tb00656.x
Azevedo, M., Silva, C., 2020. A framework to investigate fishery
dynamics and species size and age spatio-temporal distribution patterns
based on daily resolution data: a case study using Northeast Atlantic
horse mackerel. ICES Journal of Marine Science 77, 2933–2944.https://doi.org/10.1093/icesjms/fsaa170
Banerjee S, Roy A
(2014) Linear Algebra and Matrix Analysis for Statistics, 1st edition.
Chapman and Hall/CRC, Boca Raton Fla.
Bastardie, F., Nielsen, J.R., Eigaard, O.R., Fock, H.O., Jonsson, P.,
Bartolino, V., 2015. Competition for marine space: modelling the Baltic
Sea fisheries and effort displacement under spatial restrictions. ICES
Journal of Marine Science 72, 824–840.
https://doi.org/10.1093/icesjms/fsu215
Bastardie, F., Nielsen, J.R., Miethe, T., 2014. DISPLACE: a dynamic,
individual-based model for spatial fishing planning and effort
displacement—integrating underlying fish population models. Canadian
Journal of Fisheries and Aquatic Sciences 71, 366–386.
Bastardie, F., Nielsen, J.R., Ulrich, C., Egekvist, J., Degel, H., 2010.
Detailed mapping of fishing effort and landings by coupling fishing
logbooks with satellite-recorded vessel geo-location. Fisheries Research
106, 41–53.
Bezerra, I.M., Hostim-Silva, M., Teixeira, J.L.S., Hackradt, C.W.,
Félix-Hackradt, F.C., Schiavetti, A., 2021. Spatial and temporal
patterns of spawning aggregations of fish from the Epinephelidae and
Lutjanidae families: An analysis by the local ecological knowledge of
fishermen in the Tropical Southwestern Atlantic. Fisheries Research 239,
105937.
Biggs, C.R., Heyman, W.D., Farmer, N.A., Kobara, S., Bolser, D.G.,
Robinson, J., Lowerre-Barbieri, S.K., Erisman, B.E., 2021. The
importance of spawning behavior in understanding the vulnerability of
exploited marine fishes in the US Gulf of Mexico. PeerJ 9, e11814.
Campbell, M.S., Stehfest, K.M., Votier, S.C., Hall-Spencer, J.M., 2014.
Mapping fisheries for marine spatial planning: Gear-specific vessel
monitoring system (VMS), marine conservation and offshore renewable
energy. Marine Policy 45, 293–300.
https://doi.org/10.1016/j.marpol.2013.09.015
Dambrine, C., Woillez, M., Huret, M., de Pontual, H., 2021.
Characterising Essential Fish Habitat using spatio-temporal analysis of
fishery data: A case study of the European seabass spawning areas.
Fisheries oceanography 30, 413–428.
Delage, N., Le Pape, O., 2016. Inventaire des zones fonctionnelles pour
les ressources halieutiques dans les eaux sous souveraineté française.
Première partie: Définitions, critères d’importance et méthode pour
déterminer des zones d’importance à protéger en priorité (Rapport de
recherche). Pôle halieutique AGROCAMPUS OUEST, Rennes.
Delaunay, D., Brind’Amour, A., 2018. Campagnes « Nourriceries ».
Fincham, J.I., Rijnsdorp, A.D., Engelhard, G.H., 2013. Shifts in the
timing of spawning in sole linked to warming sea temperatures. Journal
of Sea Research 75, 69–76.
Fox, C.J., Taylor, M., Dickey-Collas, M., Fossum, P., Kraus, G., Rohlf,
N., Munk, P., van Damme, C.J., Bolle, L.J., Maxwell, D.L., 2008. Mapping
the spawning grounds of North Sea cod (Gadus morhua) by direct and
indirect means. Proceedings of the Royal Society B: Biological Sciences
275, 1543–1548.
Gerritsen, H., Lordan, C., 2011. Integrating vessel monitoring systems
(VMS) data with daily catch data from logbooks to explore the spatial
distribution of catch and effort at high resolution. ICES Journal of
Marine Science 68, 245–252.
Grüss, A., Biggs, C.R., Heyman, W.D., Erisman, B., 2019. Protecting
juveniles, spawners or both: A practical statistical modelling approach
for the design of marine protected areas. Journal of Applied Ecology 56,
2328–2339. https://doi.org/10.1111/1365-2664.13468
Grüss, A., Thorson, J.T., Stawitz, C.C., Reum, J.C.P., Rohan, S.K.,
Barnes, C.L., 2021. Synthesis of interannual variability in spatial
demographic processes supports the strong influence of cold-pool extent
on eastern Bering Sea walleye pollock (Gadus chalcogrammus). Progress in
Oceanography 194, 102569. https://doi.org/10.1016/j.pocean.2021.102569
Hannachi, A., Jolliffe, I.T., Stephenson, D.B., 2007. Empirical
orthogonal functions and related techniques in atmospheric science: A
review. Int. J. Climatol. 27, 1119–1152.
https://doi.org/10.1002/joc.1499
Harden, J., 1969. Fish Migration. Copeia 409–411.
Hintzen, N.T., Bastardie, F., Beare, D., Piet, G.J., Ulrich, C.,
Deporte, N., Egekvist, J., Degel, H., 2012. VMStools: Open-source
software for the processing, analysis and visualisation of fisheries
logbook and VMS data. Fisheries Research 115–116, 31–43.
https://doi.org/10.1016/j.fishres.2011.11.007
Huret, M., Bourriau, P., Doray, M., Gohin, F., Petitgas, P., 2018.
Survey timing vs. ecosystem scheduling: Degree-days to underpin observed
interannual variability in marine ecosystems. Progress in Oceanography
166, 30–40.
Kai, M., Thorson, J.T., Piner, K.R., Maunder, M.N., 2017. Spatiotemporal
variation in size-structured populations using fishery data: An
application to shortfin mako (Isurus oxyrinchus) in the Pacific Ocean.
Canadian Journal of Fisheries and Aquatic Sciences 74, 1765–1780.
Lê, S., Josse, J., Husson, F., 2008. FactoMineR: an R package for
multivariate analysis. Journal of statistical software 25, 1–18.
Lehuta, S., Vermard, Y., 2023. Contrasting impacts of the landing
obligation at fleet scale: impact assessment of mitigation scenarios in
the Eastern English Channel. ICES Journal of Marine Science 80,
518–531.
Lieth, H., 2013. Phenology and Seasonality Modeling. Springer Science &
Business Media.
Lorenz, E.N., 1956. Empirical orthogonal functions and statistical
weather prediction. Massachusetts Institute of Technology, Department of
Meteorology Cambridge.
Monahan, A.H., Fyfe, J.C., Ambaum, M.H.P., Stephenson, D.B., North,
G.R., 2009. Empirical Orthogonal Functions: The Medium is the Message.
Journal of Climate 22, 6501–6514.
https://doi.org/10.1175/2009JCLI3062.1
Murray, L.G., Hinz, H., Hold, N., Kaiser, M.J., 2013. The effectiveness
of using CPUE data derived from Vessel Monitoring Systems and fisheries
logbooks to estimate scallop biomass. ICES Journal of Marine Science 70,
1330–1340.
Olmos M, Ianelli J,
Ciannelli L, Spies I, McGilliard CR, Thorson JT (2023) Estimating
climate-driven phenology shifts and survey availability using
fishery-dependent data. Prog Oceanogr 215:103035.
Petitgas, P., 1997. Sole egg distributions in space and time
characterised by a geostatistical model and its estimation variance.
ICES Journal of Marine Science 54, 213–225.
Petitgas, P., Doray, M., Huret, M., Massé, J., Woillez, M., 2014.
Modelling the variability in fish spatial distributions over time with
empirical orthogonal functions: anchovy in the Bay of Biscay. ICES
Journal of Marine Science 71, 2379–2389.
https://doi.org/10.1093/icesjms/fsu111
Planque, B., Loots, C., Petitgas, P., LINDSTRøM, U.L.F., Vaz, S., 2011.
Understanding what controls the spatial distribution of fish populations
using a multi-model approach. Fisheries Oceanography 20, 1–17.
https://doi.org/10.1111/j.1365-2419.2010.00546.x
Poulard, J.-C., 2001. Distribution of hake (Merluccius merluccius,
Linnaeus, 1758) in the Bay of Biscay and the Celtic sea from the
analysis of French commercial data. Fisheries Research 50, 173–187.
Quemper, F., 2021. Modélisation de la distribution spatiale de la
sardine du Golfe de Gascogne (Sardina pilchardus) par intégration de
données commerciales et scientifiques: enjeux et limites. Institut Agro,
Rennes.
Rufener, M.-C., Kristensen, K., Nielsen, J.R., Bastardie, F., 2021.
Bridging the gap between commercial fisheries and survey data to model
the spatiotemporal dynamics of marine species. Ecological Applications
e02453.
Silvano, R.A., MacCord, P.F., Lima, R.V., Begossi, A., 2006. When does
this fish spawn? Fishermen’s local knowledge of migration and
reproduction of Brazilian coastal fishes. Environmental Biology of
fishes 76, 371–386.
Thorson, J.T., Cheng, W., Hermann, A.J., Ianelli, J.N., Litzow, M.A.,
O’Leary, C.A., Thompson, G.G., 2020a. Empirical orthogonal function
regression: Linking population biology to spatial varying environmental
conditions using climate projections. Global Change Biology 26,
4638–4649. https://doi.org/10.1111/gcb.15149
Thorson, J.T., Ciannelli, L., Litzow, M.A., 2020b. Defining indices of
ecosystem variability using biological samples of fish communities: A
generalization of empirical orthogonal functions. Progress in
Oceanography 181, 102244. https://doi.org/10.1016/j.pocean.2019.102244
Yochum, N., Starr, R.M., Wendt, D.E., 2011. Utilizing fishermen
knowledge and expertise: keys to success for collaborative fisheries
research. Fisheries 36, 593–605.