References
1. Abdool Karim SS, de Oliveira T. New SARS-CoV-2 Variants — Clinical, Public Health, and Vaccine Implications. New England Journal of Medicine . 2021;384(19):1866-1868. doi:10.1056/NEJMc2100362
2. Aydogdu MO, Rohn JL, Jafari NV, Brako F, Homer-Vanniasinkam S, Edirisinghe M. Severe Acute Respiratory Syndrome Type 2-Causing Coronavirus: Variants and Preventive Strategies. Adv Sci (Weinh) . Apr 2022;9(11):e2104495. doi:10.1002/advs.202104495
3. WHO. WHO Coronavirus (COVID-19) Dashboard. WHO . 09/13/2023 2023;
4. Robba C, Battaglini D, Pelosi P, Rocco PRM. Multiple organ dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Review of Respiratory Medicine . 2020/09/01 2020;14(9):865-868. doi:10.1080/17476348.2020.1778470
5. Kruglikov IL, Shah M, Scherer PE. Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions. Elife . Sep 15 2020;9doi:10.7554/eLife.61330
6. Liu Z, Li J, Huang J, et al. Association Between Diabetes and COVID-19: A Retrospective Observational Study With a Large Sample of 1,880 Cases in Leishenshan Hospital, Wuhan. Front Endocrinol (Lausanne) . 2020;11:478. doi:10.3389/fendo.2020.00478
7. Caussy C, Wallet F, Laville M, Disse E. Obesity is associated with severe forms of COVID-19. Obesity . 2020;28(7):1175-1175.
8. Deng M, Qi Y, Deng L, et al. Obesity as a potential predictor of disease severity in young COVID‐19 patients: a retrospective study.Obesity . 2020;28(10):1815-1825.
9. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. Jama . May 26 2020;323(20):2052-2059. doi:10.1001/jama.2020.6775
10. Singh AK, Gupta R, Misra A. Comorbidities in COVID-19: Outcomes in hypertensive cohort and controversies with renin angiotensin system blockers. Diabetes Metab Syndr . Jul-Aug 2020;14(4):283-287. doi:10.1016/j.dsx.2020.03.016
11. Zhang F, Xiong Y, Wei Y, et al. Obesity predisposes to the risk of higher mortality in young COVID-19 patients. J Med Virol . Nov 2020;92(11):2536-2542. doi:10.1002/jmv.26039
12. Daamen AR, Bachali P, Owen KA, et al. Comprehensive transcriptomic analysis of COVID-19 blood, lung, and airway. Sci Rep . Mar 29 2021;11(1):7052. doi:10.1038/s41598-021-86002-x
13. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure.Cell Host Microbe . Jun 10 2020;27(6):992-1000.e3. doi:10.1016/j.chom.2020.04.009
14. Sattar N, McInnes IB, McMurray JJV. Obesity Is a Risk Factor for Severe COVID-19 Infection: Multiple Potential Mechanisms.Circulation . Jul 7 2020;142(1):4-6. doi:10.1161/circulationaha.120.047659
15. Rottoli M, Bernante P, Belvedere A, et al. How important is obesity as a risk factor for respiratory failure, intensive care admission and death in hospitalised COVID-19 patients? Results from a single Italian centre. Eur J Endocrinol . Oct 2020;183(4):389-397. doi:10.1530/eje-20-0541
16. Syed AA, Soran H, Adam S. Obesity and covid-19: the unseen risks.Bmj . Jul 16 2020;370:m2823. doi:10.1136/bmj.m2823
17. Lighter J, Phillips M, Hochman S, et al. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission.Clin Infect Dis . Jul 28 2020;71(15):896-897. doi:10.1093/cid/ciaa415
18. Deng M, Qi Y, Deng L, et al. Obesity as a Potential Predictor of Disease Severity in Young COVID-19 Patients: A Retrospective Study.Obesity (Silver Spring) . Oct 2020;28(10):1815-1825. doi:10.1002/oby.22943
19. Bantulà M, Tubita V, Roca-Ferrer J, et al. Differences in Inflammatory Cytokine Profile in Obesity-Associated Asthma: Effects of Weight Loss. J Clin Med . Jun 29 2022;11(13)doi:10.3390/jcm11133782
20. Khanna D, Khanna S, Khanna P, Kahar P, Patel BM. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus . Feb 2022;14(2):e22711. doi:10.7759/cureus.22711
21. Lee KS, Russ BP, Wong TY, et al. Diet induced obesity and type 2 diabetes drives exacerbated sex-associated disease profiles in K18-hACE2-mice challenged with SARS-CoV-2. bioRxiv . 2022:2022.04.26.489580. doi:10.1101/2022.04.26.489580
22. Zhang Y-N, Zhang Z-R, Zhang H-Q, et al. Increased morbidity of obese mice infected with mouse-adapted SARS-CoV-2. Cell Discovery . 2021/08/25 2021;7(1):74. doi:10.1038/s41421-021-00305-x
23. Khanolkar A, Hartwig SM, Haag BA, et al. Protective and pathologic roles of the immune response to mouse hepatitis virus type 1: implications for severe acute respiratory syndrome. J Virol . Sep 2009;83(18):9258-72. doi:10.1128/jvi.00355-09
24. Khanolkar A, Hartwig SM, Haag BA, Meyerholz DK, Harty JT, Varga SM. Toll-Like Receptor 4 Deficiency Increases Disease and Mortality after Mouse Hepatitis Virus Type 1 Infection of Susceptible C3H Mice.Journal of Virology . 2009;83(17):8946-8956. doi:doi:10.1128/jvi.01857-08
25. Khanolkar A, Fulton RB, Epping LL, et al. T cell epitope specificity and pathogenesis of mouse hepatitis virus-1-induced disease in susceptible and resistant hosts. J Immunol . Jul 15 2010;185(2):1132-41. doi:10.4049/jimmunol.0902749
26. S. A. FastQC: a quality control tool for high throughput sequence data. 2010;
27. Institute. JG. BBMap guide. JGI . 10/23/2015 2015;
28. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics . Jan 1 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635
29. Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics . Jan 15 2015;31(2):166-9. doi:10.1093/bioinformatics/btu638
30. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology . 2014/12/05 2014;15(12):550. doi:10.1186/s13059-014-0550-8
31. Ge SX, Son EW, Yao R. iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinformatics . 2018/12/19 2018;19(1):534. doi:10.1186/s12859-018-2486-6
32. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics . Jan 16 2013;14:7. doi:10.1186/1471-2105-14-7
33. Daamen AR, Bachali P, Bonham CA, et al. COVID-19 patients exhibit unique transcriptional signatures indicative of disease severity.Front Immunol . 2022;13:989556. doi:10.3389/fimmu.2022.989556
34. Wilson JJ, Wei J, Daamen AR, et al. Glucose oxidation-dependent survival of activated B cells provides a putative novel therapeutic target for lupus treatment. iScience . Sep 15 2023;26(9):107487. doi:10.1016/j.isci.2023.107487
35. De Albuquerque N, Baig E, Ma X, et al. Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J Virol . 2006/11// 2006;80(21):10382-10394. doi:10.1128/jvi.00747-06
36. DeAlbuquerque N, Baig E, Xuezhong M, et al. Murine Hepatitis Virus Strain 1 as a Model for Severe Acute Respiratory Distress Syndrome (Sars). Springer US; 2006:373-378.
37. Rai P, Chuong C, LeRoith T, et al. Adenovirus transduction to express human ACE2 causes obesity-specific morbidity in mice, impeding studies on the effect of host nutritional status on SARS-CoV-2 pathogenesis. Virology . Nov 2021;563:98-106. doi:10.1016/j.virol.2021.08.014
38. De Albuquerque N, Baig E, Ma X, et al. Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J Virol . Nov 2006;80(21):10382-94. doi:10.1128/jvi.00747-06
39. VerHague M, Albright J, Barron K, Kim M, Bennett BJ. Obesogenic and diabetic effects of CD44 in mice are sexually dimorphic and dependent on genetic background. Biology of Sex Differences . 2022/04/11 2022;13(1):14. doi:10.1186/s13293-022-00426-2
40. Poggi M, Bastelica D, Gual P, et al. C3H/HeJ mice carrying a toll-like receptor 4 mutation are protected against the development of insulin resistance in white adipose tissue in response to a high-fat diet. Diabetologia . 2007/06/01 2007;50(6):1267-1276. doi:10.1007/s00125-007-0654-8
41. Almind K, Kahn CR. Genetic Determinants of Energy Expenditure and Insulin Resistance in Diet-Induced Obesity in Mice. Diabetes . 2004;53(12):3274-3285. doi:10.2337/diabetes.53.12.3274
42. Rendina-Ruedy E, Hembree KD, Sasaki A, et al. A Comparative Study of the Metabolic and Skeletal Response of C57BL/6J and C57BL/6N Mice in a Diet-Induced Model of Type 2 Diabetes. J Nutr Metab . 2015;2015:758080. doi:10.1155/2015/758080
43. Arulanandam B, Beladi H, Chakrabarti A. Obesity and COVID-19 mortality are correlated. Scientific Reports . 2023/04/11 2023;13(1):5895. doi:10.1038/s41598-023-33093-3
44. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, et al. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J Clin Endocrinol Metab . Aug 1 2020;105(8)doi:10.1210/clinem/dgaa346
45. Petersen A, Bressem K, Albrecht J, et al. The role of visceral adiposity in the severity of COVID-19: Highlights from a unicenter cross-sectional pilot study in Germany. Metabolism . Sep 2020;110:154317. doi:10.1016/j.metabol.2020.154317
46. Klang E, Kassim G, Soffer S, Freeman R, Levin MA, Reich DL. Severe Obesity as an Independent Risk Factor for COVID-19 Mortality in Hospitalized Patients Younger than 50. Obesity (Silver Spring) . Sep 2020;28(9):1595-1599. doi:10.1002/oby.22913
47. Bösmüller H, Matter M, Fend F, Tzankov A. The pulmonary pathology of COVID-19. Virchows Arch . Jan 2021;478(1):137-150. doi:10.1007/s00428-021-03053-1
48. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med . Jul 2020;8(7):681-686. doi:10.1016/s2213-2600(20)30243-5
49. Schaller T, Hirschbühl K, Burkhardt K, et al. Postmortem Examination of Patients With COVID-19. Jama . Jun 23 2020;323(24):2518-2520. doi:10.1001/jama.2020.8907
50. Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clin Pathol . May 5 2020;153(6):725-733. doi:10.1093/ajcp/aqaa062
51. Lax SF, Skok K, Zechner P, et al. Pulmonary Arterial Thrombosis in COVID-19 With Fatal Outcome : Results From a Prospective, Single-Center, Clinicopathologic Case Series. Ann Intern Med . Sep 1 2020;173(5):350-361. doi:10.7326/m20-2566
52. Carvallo FR, Stevenson VB. Interstitial pneumonia and diffuse alveolar damage in domestic animals. Vet Pathol . Jul 2022;59(4):586-601. doi:10.1177/03009858221082228
53. Sinha P, Bos LD. Pathophysiology of the Acute Respiratory Distress Syndrome: Insights from Clinical Studies. Crit Care Clin . Oct 2021;37(4):795-815. doi:10.1016/j.ccc.2021.05.005
54. van den Brand JM, Smits SL, Haagmans BL. Pathogenesis of Middle East respiratory syndrome coronavirus. The Journal of Pathology . 2015;235(2):175-184. doi:https://doi.org/10.1002/path.4458
55. Roberts CM, Levi M, McKee M, Schilling R, Lim WS, Grocott MPW. COVID-19: a complex multisystem disorder. Br J Anaesth . Sep 2020;125(3):238-242. doi:10.1016/j.bja.2020.06.013
56. Wang Y, Schughart K, Pelaia TM, et al. Blood transcriptome responses in patients correlate with severity of COVID-19 disease. Original Research. Frontiers in Immunology . 2023-January-20 2023;13doi:10.3389/fimmu.2022.1043219
57. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res . Oct 11 2006;7(1):125. doi:10.1186/1465-9921-7-125
58. Malaviya R, Laskin JD, Laskin DL. Anti-TNFα therapy in inflammatory lung diseases. Pharmacol Ther . Dec 2017;180:90-98. doi:10.1016/j.pharmthera.2017.06.008
59. Hanna A, Frangogiannis NG. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc Drugs Ther . Dec 2020;34(6):849-863. doi:10.1007/s10557-020-07071-0
60. Nawroth PP, Stern DM. Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med . Mar 1 1986;163(3):740-5. doi:10.1084/jem.163.3.740
61. Conkling PR, Greenberg CS, Weinberg JB. Tumor necrosis factor induces tissue factor-like activity in human leukemia cell line U937 and peripheral blood monocytes. Blood . Jul 1988;72(1):128-33.
62. Page EM, Ariëns RAS. Mechanisms of thrombosis and cardiovascular complications in COVID-19. Thromb Res . Apr 2021;200:1-8. doi:10.1016/j.thromres.2021.01.005
63. Bautista-Vargas M, Bonilla-Abadía F, Cañas CA. Potential role for tissue factor in the pathogenesis of hypercoagulability associated with in COVID-19. J Thromb Thrombolysis . Oct 2020;50(3):479-483. doi:10.1007/s11239-020-02172-x
64. Kanneganti TD, Dixit VD. Immunological complications of obesity.Nat Immunol . Jul 19 2012;13(8):707-12. doi:10.1038/ni.2343
65. De Miguel C, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets.Curr Hypertens Rep . Jan 2015;17(1):507. doi:10.1007/s11906-014-0507-z
66. Qiu D, Zhang D, Yu Z, Jiang Y, Zhu D. Bioinformatics approach reveals the critical role of the NOD-like receptor signaling pathway in COVID-19-associated multiple sclerosis syndrome. J Neural Transm (Vienna) . Aug 2022;129(8):1031-1038. doi:10.1007/s00702-022-02518-0
67. Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev . Oct 2021;61:2-15. doi:10.1016/j.cytogfr.2021.06.002
68. Uzun G, Pelzl L, Singh A, Bakchoul T. Immune-Mediated Platelet Activation in COVID-19 and Vaccine-Induced Immune Thrombotic Thrombocytopenia. Mini Review. Frontiers in Immunology . 2022-February-22 2022;13doi:10.3389/fimmu.2022.837629
69. Manne BK, Denorme F, Middleton EA, et al. Platelet gene expression and function in patients with COVID-19. Blood . Sep 10 2020;136(11):1317-1329. doi:10.1182/blood.2020007214
70. Pastorek M, Dúbrava M, Celec P. On the Origin of Neutrophil Extracellular Traps in COVID-19. Front Immunol . 2022;13:821007. doi:10.3389/fimmu.2022.821007
71. Al-Kuraishy HM, Al-Gareeb AI, Al-Hussaniy HA, Al-Harcan NAH, Alexiou A, Batiha GE. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int Immunopharmacol . Mar 2022;104:108516. doi:10.1016/j.intimp.2021.108516
72. Ge J, Song T, Li M, et al. The medicinal value of tea drinking in the management of COVID-19. Heliyon . Jan 2023;9(1):e12968. doi:10.1016/j.heliyon.2023.e12968
73. Murphy KM, Ouyang W, Farrar JD, et al. Signaling and Transcription in T Helper Development. Annual Review of Immunology . 2000;18(1):451-494. doi:10.1146/annurev.immunol.18.1.451
74. Jason N, Xiaoyu L, Julie F, et al. SARS-CoV-2-specific T cells exhibit phenotypic features reflecting robust helper function, lack of terminal differentiation, and high proliferative potential.bioRxiv . 2020:2020.06.08.138826. doi:10.1101/2020.06.08.138826
75. Roncati L, Nasillo V, Lusenti B, Riva G. Signals of Th2 immune response from COVID-19 patients requiring intensive care. Annals of Hematology . 2020/06/01 2020;99(6):1419-1420. doi:10.1007/s00277-020-04066-7
76. Martonik D, Parfieniuk-Kowerda A, Rogalska M, Flisiak R. The Role of Th17 Response in COVID-19. Cells . Jun 19 2021;10(6)doi:10.3390/cells10061550
77. Zhao X, Liang Q, Li H, Jing Z, Pei D. Single-cell RNA sequencing and multiple bioinformatics methods to identify the immunity and ferroptosis-related biomarkers of SARS-CoV-2 infections to ischemic stroke. Aging (Albany NY) . Aug 21 2023;15(16):8237-8257. doi:10.18632/aging.204966
78. Wauters E, Van Mol P, Garg AD, et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Research . 2021/03/01 2021;31(3):272-290. doi:10.1038/s41422-020-00455-9
79. Gisby JS, Buang NB, Papadaki A, et al. Multi-omics identify falling LRRC15 as a COVID-19 severity marker and persistent pro-thrombotic signals in convalescence. Nature Communications . 2022/12/15 2022;13(1):7775. doi:10.1038/s41467-022-35454-4
80. Moolamalla STR, Balasubramanian R, Chauhan R, Priyakumar UD, Vinod PK. Host metabolic reprogramming in response to SARS-CoV-2 infection: A systems biology approach. Microb Pathog . Sep 2021;158:105114. doi:10.1016/j.micpath.2021.105114
81. Livanos AE, Jha D, Cossarini F, et al. Intestinal Host Response to SARS-CoV-2 Infection and COVID-19 Outcomes in Patients With Gastrointestinal Symptoms. Gastroenterology . Jun 2021;160(7):2435-2450.e34. doi:10.1053/j.gastro.2021.02.056
82. Daamen AR, Bachali P, Grammer AC, Lipsky PE. Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features. Int J Mol Sci . Mar 3 2023;24(5)doi:10.3390/ijms24054905
83. Aschenbrenner AC, Mouktaroudi M, Krämer B, et al. Disease severity-specific neutrophil signatures in blood transcriptomes stratify COVID-19 patients. Genome Med . Jan 13 2021;13(1):7. doi:10.1186/s13073-020-00823-5