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This paper studies how an edge recurrent neural network can
improve a Battery Monitoring System (BMS). The proposed
monitoring measures current, voltage, and temperature and in-
fers the State of Charge (SoC) and State of Health (SoH) values
through machine learning in an embedded system. The study
relies on two test cases: a theoretical one using NASA’s battery
dataset, where the high volume of data is best suited for a study,
and a second one with a system built in the University of São
Paulo where this paper can analyze more profound the practical
results of its use. This system of the second test case consists
of peripheral sensors integrated into an Internet of Things (IoT)
platform, sending the data collected from a VRLA battery to a
Single Board Computer (SBC) via Bluetooth Low Energy (BLE).
The edge SBC concentrates this received data - from one or more
IoT nodes - generating new data for supervision and enabling
control. The SBC communicates with a Web server in a one-way
route to send the battery data without any data request. The al-
gorithm developed for the SoC uses a dense recursive network
with Mean Absolute Error (MAE) up to 0.2, and for SoC above
10%, the Mean Absolute Percentage Error (MAPE) can reach
0.16%. As an SoH calculation method, the battery replacement
performs the methodology when the capacity reaches 80% of its
nominal capacity. It is essential to highlight that these results are
from a devices with limited hardware availability without cloud
communication.
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1 | INTRODUCTION

Battery banks are essential in several applications. It can be
used as a primary energy source in isolated applications or as
a secondary source of energy - backup - in case of failures in
the electrical grid. The availability of energy by battery banks
directly depends on the quality and integrity of its elements,
and, in case of failure, the energy supply would be interrupted.
For that reason, monitoring these battery banks is extremely
important for their continuous operation.

In the Brazilian scenario where this research has taken
place, due to the difficulty of providing Internet connection in
some hard-to-reach places in Brazil, such as isolated electrical
substations, and the necessity of a high accuracy level of
Battery Monitoring System (BMS), this system should not
rely on this type of connection. Nevertheless, this scenario
should not be considered a limitation but an opportunity to
develop a system that can solve a broader spectrum of BMS
use cases. Thus, this paper seeks a system that does not
rely on an Internet connection for a proper function, while
the accuracy of a machine learning algorithm is more than
welcome.

The BMS consists of sensors that measure the magnitudes
of the battery, especially current, voltage, and temperature [1],
transmitting them to a concentrator unit that will work these
data. The concentrator unit operates this data to obtain two
other critical measurements: state of charge (SoC) and state of
health (SoH), which cannot be directly measured. Although
this is the most usual BMS formation, there are different ways
to do it, and many other variables can be monitored.

SoC, as [1] defines it, is a unitless measurement ranging
from 0 to 1 - or more commonly in percent - denoting a cell’s
residual energy. The measure dictates that the total possible
amount of energy the battery can provide corresponds to 1, or
100%, while the minimum amount of energy the battery can
provide is 0 or 0%. Thus, the SoC is defined as the percentage
of energy that the battery has and can provide.

Another measure addressed in this system is the SoH. Ac-
cording to the battery usage, it will degrade, causing an in-
ternal resistance increase and thus decreasing the amount of
charge the battery can provide. In valve-regulated lead acid
(VRLA) batteries, this degradation over time has an almost
linear degradation until it reaches the maximum load of 80%

F I G U R E 1 VRLA SoC over time [2]

of the nominal capacity. After this range, the degradation
stops to have a linear pattern. The degradation becomes un-
predictable and with higher degradation over time, as shown
in Fig. 1. This pattern is why changing the battery when it
reaches this mark is instructed.

One crucial point to notice is that there are many ways to
infer the SoC value, and it can be classified as direct, model-
based, learning algorithm, and hybrid methods, as seen in
[3]. This paper considers machine learning one of the most
efficient ways, as seen in [4], and proposes edge machine
learning as a future technology to be explored. The machine
learning approach is even more attractive as the technology
advances, and together, the processing capacity at the edge,
as [5] also states. This paper uses machine learning due to
its simplicity, accuracy, and capacity to achieve great results,
but this has to add the possibility of the machine learning
running in low-power consumption devices without internet
connections, hence the edge machine learning.

One crucial point in designing the BMS architecture is
to use the top-of-the-notch architecture that can leverage the
system. Nowadays, Internet of Things (IoT) devices provide
that. This concept can counterattack the unpredictability in
the final architecture of the battery system to be analyzed,
leveraging the scalability. This study will analyze if the use
case of IoT devices can effectively supply the needs for a BMS
even if running an edge machine learning or if it is necessary
to downgrade its potential without cloud computing. Also,
this study will analyze what kind of data is necessary for better
accuracy in BMS and what the data can teach us for a better
fit between data, devices, and technologies to reach a better
BMS.

In order to accomplish that, this paper has two main goals:
propose the next-generation BMS architecture using technolo-
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gies already available but studying for a better fit in devices
and technology for the BMS, possibly having a new configu-
ration, and study the machine learning approach for the SoC
inference in this new scenario, pointing out what the data can
teach us, what this technology can support, and the future
holds for this configuration.

The contributions of this article are listed below:

• BMS model with machine learning on edge, producing
scalability without using the cloud and without inherent
performance loss

• Architecture that can leverage edge machine learning for
BMS

• Demonstration of the ability to implement a complete BMS
using IoT as an edge device

The article follows with the related works section present-
ing an overview of the BMS development. Subsequently, the
paper presents the IoT device and software architecture. After
that, it explains the network training, followed by validation
and testing, demonstrating the experiments. Finally, the re-
sults are analyzed, and the conclusion discusses the results
achieved with this work.

2 | RELATED WORK

The main problem with measuring the SoC is that it cannot
be acquired directly, as voltage can, so it is necessary to infer
the value. This necessity occurs because the value possible to
acquire refers to the energy flowing out of the battery, but the
SoC measures the percentage of energy in a battery. Know-
ing this, SoC still has other obstacles besides knowing the
maximum and minimum value of the amount of charge that
the battery can concentrate, such as the fact that the internal
resistance of the battery has a direct correspondence with the
SoC.

The correspondence with the internal resistance brings
another challenge because, as [1] also points out, the value
can not be accurately acquired when measured with the load
connected, which is the case for many use cases. Besides
disconnecting the battery, it needs a resting time - usually
indicated as half an hour - to measure accurately.

Such a configuration is infeasible for an accurate real-time
monitoring system, which is one reason to seek other methods
of inferring SoC without using the battery’s internal resis-
tance.

Knowing these challenges, it is important to learn what
are the currently existing methods to acquire the SoC, which
are:

• direct methods such as counting coulombs and open-circuit
voltage

• model-based method as extended kalman-filters
• learning algorithm as feed-foward neural networks, recur-

rent neural networks and deep learning algorithms
• hybrid methods, where it is a combination of the others,

as a kalman-filter with a back-propagation algorithm

However, it is essential to understand that there are other
methods, such as the model-based extended kalman-filter that
is highly used as in [6], and [7], and the hybrid methods with
filters and techniques that can increase the accuracy for a sys-
tem, as in [8], this article focuses in the learning algorithms.

The computational model using machine learning carries
significant benefits for SoC inference, as it does not require
parameterizing the battery as to the state of minimum and
maximum charge, despite being a point of interest to build
more accurate algorithms. In addition, it is unnecessary to
know the technical data of the battery, as in the case of di-
rect models as the equivalent models and even the counting
coulombs.

Despite not using all the elements presented in this energy
conversion of the battery and the approximations used for
the optimization of the model, it reaches more accuracy in
constructing the mathematical model. This means that this
model is also essential because, as mentioned, it does not
need to calculate the internal resistance or model it, being
a value that the machine learning itself can infer without
calculating it correctly. That is suitable because, as [9] states,
it is impossible to find the correspondence.

Within this machine learning model, we can also highlight
that besides the use of different algorithms, as [10] points out,
with neural networks [11], recurrent neural networks [8], and
[12], up to more powerful models like Deep Learning [3] and
Deep Reinforcement Learning [13], we also have the variation
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of the hardware used, and it is architecture.
One can classify into three major groups: the methods

using low computational power in cheaper and more devices
with limited hardware availability as in [14], [15], and [16],
usually using algebraic models or even simpler machine learn-
ing models such as linear regression. A second group uses
heavy computational models, like Reinforcement Neural Net-
work (RNN) up to XGboost, but being used in personal com-
puters, like em [6], [17], [18], [19] and [20], which also directs
the thought to the higher power consumption. Moreover, a
third group with the use of these same heavier algorithms on
intermediate hardware, as the IoT used here, but which makes
use of cloud computing to make the inference, as in [7] and
[13], which also does not satisfy the restricted application
environment of this paper.

This paper introduces a model that does not fit into these
large groups, with a heavier computational model - in this
case, the RNN - used on intermediate hardware but without
the need for cloud computing. It is worth mentioning that
[11] has already done the technique of using a microcontroller
with pre-trained neural network weights. However, the paper
does not present temperature input with valuable information,
does not use a recursive neural network that can leverage
the system besides a heavier computational algorithm, and
presents errors between 1.59% and 5.847%. A critical point
here is that the methods using RNNs and their variations
present better results, as pointed out in [8], [10], and [17], and
the training method used can be of great value. Table 1 briefly
summarises some of the papers analyzed.

For the SoH measurement, this paper, as well as [6] and
[24], aims to find the moment when the capacity is reduced to
80% of the nominal value as the point to change the battery,
considering the end of its useful life. Although this method has
good performance with little use of computational resources, it
is essential to note that other methods exist and are improving,
as [5] points out, with complex methods, as in [13] employing
genetic algorithms.

The analyses of the related works solutions identified sev-
eral possible improvement points in the monitoring algorithms.
Among the articles that do not require the battery to be discon-
nected or to remain at rest are those using machine learning.
Many machine learning solutions require high computational
power or cloud computing. Some methods still disregard the

variables for use in a real-case application and do not use
temperature as input data or only a fixed temperature, reduc-
ing their accuracy. Other methods still need to contemplate
scalability for different application architectures or to couple
BMS functions such as maintenance. Thus, this proposed
algorithm based on the IoT edge architecture using edge RNN
aims to end these problems and also brings an essential point
to the discussion: the energy consumption and the price cost
of the system.

This paper accomplishes these results because the architec-
ture does not consume high energy or computational power
and does not require Internet connections. Also, this work
considers temperature as a factor that influences the battery’s
internal resistance, which can be quickly escalated by coupling
more node devices or functions to the edge device. There is
still room for improvement for a complete BMS. All of that is
still trying to minimize the system’s energy consumption.

3 | ARCHITECTURE

This section will present the architecture of the BMS for the
second test case, developed at the University of São Paulo.
To minimize energy consumption and increase the project’s
scalability, it uses an edge system with low-power IoT devices
that, as [26] and [23] explain, this system can provide this
efficiently. Firstly, to understand the installed system, it is
essential to know which IoT devices this research uses.

3.1 | Edge Device

This study uses the Labrador as the edge device, an IoT plat-
form developed at the University of São Paulo. This Single
Board Computer has a quad-core of 64 bits, 16 Gigabytes of
memory, 2 Gigabytes of RAM, and consumes 3 Watts [27].

3.2 | Node Device

This research uses the Pulga module as the node device. This
IoT has 1 megabyte of memory, 256 kilobytes of RAM, and
consumes 0.6 Watts with energy harvest capability, all in a
round shape of 24.26 millimeters in diameter [28].

Once the limitation of the hardware availability issue is
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TA B L E 1 Literature review
Author Comments

[21] SoC in Electric model. BMS is in DQN without edge-node
[22] SoC in Extreme Learning Machine using Cloud computing
[23] It is a BMS in an IoT with a edge-node
[11] IoT with SoC using NN for battery charge without temperature
[13] IoT with SoC in H-infinity, and has SoH using Cloud Computing
[24] Uses the 80% technique for SoH
[17] SoC in Recurrent Gaussian Process Regression, SoH, not in IoT
[8] It has SoC with KF-RNN and uses only at 25ºC
[7] IoT with SoC using Extended-KF, SoH uses clouding computing
[16] IoT with SoC using SVR-LR and do not compare with RNN
[15] IoT using Zigbee for ES monitoring
[3] Uses Deep Learning and has state-of-art accuracy
[19] Uses a host computer
[20] Uses a host computer with values little higher than the best ones
[25] Join the KF with neural network and uses only 25ºC

clarified, we can move to the architecture. For a better un-
derstanding, two parts divide the architecture. The first part
comprehends the communication architecture, where it will
be shown at a higher level how the IoTs transfer the data. The
second part is the software architecture, which shows how the
software processes the data, the machine learning used, and
its configuration. Thus, the following two subsections will
present communication architecture and software architecture.

3.3 | Communication Architecture

Fig.2 illustrates the high-level operation of this system. It
displays the system where the node device is attached to the
battery and measures current, temperature, and voltage. Then,
it sends these measurements via Bluetooth Low Energy (BLE)
along with a time sample to the edge device that acts as a
concentrator of the information and as the edge device. Then,
the node IoT sleeps until the following readings. A crucial
benefit of BLE is that it does not require new requests between
devices for data exchange; the devices are on standby, waiting
for new communication. Another significant benefit is that
BLE consumes less energy than Bluetooth communication.

Once the data is in the edge device, it must look for miss-
ing data cases, considering both data unsent - resulting in

missing data - and data with values that do not correspond to
actual readings - with values above or below the possible ones
- remembering that short circuit values, for example, may be
atypical but are possible. Then, using the treated data, it cal-
culates other valuable ones, power and energy. After that, the
edge device can infer the SoC value from a pre-trained RNN
machine learning algorithm. Using the SoC as a base, the
edge device can calculate SoH, and the edge device performs
power management.

The relevant data from this battery monitoring can be sent
one-way to a web server via the Internet. Then, it redirects to
an application under development, where the data flow is only
for supervision but does not allow information to be inserted
into the manager through the application for security reasons.
This method ensures that the data used for managing the
battery is from the BMS calculation and is not fake. However,
it still allows the notification of the battery conditions outside
this secure location.

3.4 | Software Architecture

Two functions divide the software architecture, the SoC infer-
ence and SoH calculation, as Fig. 3 represents. This figure
helps to understand that machine learning is used in this two-
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F I G U R E 2 Hardware architecture

layer configuration to infer the SoC, with 20 neurons in the
first one and 5 in the second. One important thing to notice is
that this figure illustrates the software for the BMS installed at
the University of São Paulo. The configuration for the study
using the NASA dataset [29] - the first test case - does not have
this 20-5 configuration. It will be adequately addressed in the
next section and does not appear in this figure for an easier
understanding, but as an earlier mention, the study using the
[29] dataset has a three-layer configuration using 500-50-10.

The Fig. 3 explains the architecture of the second test
case. The first test case is interely exploring and analyzing the
[29] dataset in a Google Colab environment. Thus, the first
test case comprehends only the assigned Google Colab part.
The following section explains the configuration and machine
learning training in the first and second test cases.

4 | MACHINE LEARNING TRAIN-
ING

The flowchart in Fig. 4 shows the top-down machine learn-
ing process from the data to the software deployment. This
flowchart demonstrates all the steps taken and includes more
details of the process from left to right. This figure is spe-
cific for the second use case, where software deployment is
required, though the steps in Google Colab are the same for
the first test. In the first test, the software loads the dataset
in Google Colab and processes the data by reading, standard-
izing, and creating the variables. After that, it builds the
machine learning, and it is possible to analyze the result and,
if necessary, build a new version of the machine learning.
This process occurs a few times during a validation, trying to

reach a better result.
Now, we can analyze the software for the second test case,

which uses the system at the University of São Paulo. It be-
gins with acquiring the dataset, where all the voltage, current,
temperature, and time readings from the sensors are summa-
rized. After that, the data processing begins, consisting of
three steps: dataset reading, standardization, and the vari-
able creation. The created variables were power and energy,
combining some previously acquired values, as seen in the
equations 1 and 2. After that, the machine learning training
begins. The machine learning training comprehends training,
testing, and validation. After these three steps, the test and
validation performances of the machine learning models are
compared. If it is the best model, it is recorded, and when
the model is good enough, the Mean Absolute Percentage Er-
ror (MAPE) is compared with the state-of-the-art benchmark.
The machine learning training restarts if any of the tests do
not produce a good enough model.

All these steps are the same as in the first case, as men-
tioned. After achieving a well-suited model, the Python soft-
ware is exported, with the data processing and pre-trained
machine learning model that infers the SoC. This software is
deployed to the edge and evaluates the time consumed and if
all the weights behave as expected. Here, we have a specific
situation, analyzing the behavior in a real case scenario.

𝑃 = 𝑈 ∗ 𝐼 (1)

𝐸 = 𝑃 ∗ 𝑡
1000

(2)

The equation 1 represents the Power equation used in this
paper, where the power P in Watts is given by the voltage U in
Volts times current I in Ampere. In the 2 equation is presented
the Energy equation, where the energy E in kWh is calculated
by power times time t in hours and divided by a thousand.

The software for SoC and SoH calculation has been devel-
oped using python and the Google Colab platform; however -
as the edge device is the final destination - the software was
deployed in python and executed in the edge device for prac-
tical results. The test software assumes that the edge device
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F I G U R E 3 Software architecture

F I G U R E 4 Software flowchart
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receives the data by BLE, so practical tests of the connection
between the node and edge devices were performed, as men-
tioned in Fig. 5. The BLE test software was made in python
and reproduced in the edge device, validating that the com-
munication of readings goes as it should. Also, the software
needs a missing data search function that is not included at
this phase of the project because, as the tests were performed
on a known database without missing data, it was not required
to deal with missing data in the software at this moment.

4.1 | Data Processing

TA B L E 2 VRLA dataset
t (s) Vol (V) C (A) Cap (Ah) P (W) E (Wh)

0 2.04 25 0 51.10 0
1 2.04 25 0 51.08 0
3 2.04 25 0 51.05 0
4 2.04 25 0 51.01 0.1
6 2.04 25 0 50.98 0.1
8 2.04 25 0.1 50.94 0.1

10 2.04 25 0.1 50.90 0.1
12 2.04 25 0.1 50.87 0.2
14 2.03 25 0.1 50.83 0.2
17 2.03 25 0.1 50.77 0.2

As Fig. 4 shows, the first step is data processing. It is
noteworthy in table 2 that there are just a few data currently
available for the battery used, which is a problem in this
principle, causing restrictions in the treatment of the data
and, consequently, in the software’s performance. For each
temperature value, there are about 75 occurrences. As the
amount of acquired data grows, it can improve the model. The
result analysis will address this point.

One crucial point to notice is that the variables used for
the test were slightly modified, which makes the performance
worse. Another essential detail is the presence of power and
energy. However, this is fine here, as the software in the
second test case creates both variables as soon as it receives
the data from the readings. It is also possible to notice that

the current has a constant value. It is an important variable
and demands to be appropriately handled in applications that
do not use constant current discharge. Although the table 2
does not show the temperature’s information, it is present as
each temperature has its dataset. Each dataset is separated by
temperature: -30,-20, -10, 0, 10, 25, and 40 ºC.

TA B L E 3 Inputs from the datasets
Collected Training data Wanted

Time X X

Voltage X X X

Current X X

Temperature X X X

Power X X

Energy X X

Capacity X X

New_capacity X

This first part of the program, data processing, is also one
of the most important. In this part, the program must ma-
nipulate the data to leverage the dataset’s best characteristics
concerning its target. The first step is to choose the variables
that will be used and standardized. In table 3, we can see
the collected variables. Time had to be excluded to avoid
overfitting, as the machine learning program could learn the
time and voltage relationship to estimate the capacity and
perform inappropriately with new data. The current has an
almost constant value due to the characteristic wanted for the
tests made, that is the same in the first test that the dataset has
an almost constant current discharge characteristic as well.
The current adds no new information to the machine learning
training and has no need in those use case. It is essential to
address that because if the current is variable, it has to be
handled and has critical value to the model.

The second step is to create the power variables and energy
in Watts and Watts-hour. As the database already has these
data, we proceed to the next step for training, but it is important
to note here that the four initial inputs created two more. After
creating these data, the min-max equation standardized the
voltage and power features. Below is represented the min-max
equation.
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𝑋𝑠𝑐 =
𝑋 −𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −𝑋𝑚𝑖𝑛
(3)

4.2 | Training

For training, it is crucial to remember that the database is
restricted. Thus, in order to not allow overfitting, where the
model created by the machine learning algorithm learns the
data pattern but is not able to generalize and perform well with
new data, and to search for results from temperatures not yet
seen, the -20ºC temperature dataset was reserved as a test and
the 10ºC temperature dataset as validation. TensorFlow Keras
API was used to train the network. Variations were made in the
number of epochs, neurons, and seeds, seeking better values;
however, there are possibly even better results with other
combinations. Another critical factor is that this combination
will not be the best with another data arrangement.

As pointed out in Fig. 3, this program consists of a dense
RNN with two layers, twenty neurons in the first and only
five in the second, and a third layer with an output neuron, all
with activation by ReLU. The supervised learning algorithm
was chosen because this paper has data regarding input and
output states; therefore, it is best suited to supervised learn-
ing. Previous studies demonstrated that recurrent networks
produced excellent results for SoC inference within these al-
gorithms and pointed out to be better researched by [10]. This
project evaluated the cost-benefit of other simpler algorithms
before using the RNN. Although the recurrent networks do
not present such expressive gains when there is a more refined
feature engineering process, a more complex and precise sys-
tem was chosen because of a well-thought architecture with
simple hardware and good computational capacity.

4.3 | State of Charge

With the network trained, the regressor created can calculate
the SoC. The output value will be the capacity in ampere-
hours (Ah), and the created min-max formula can transform
the capacity into SoC, substituting the minimum value for 0
and the maximum for the current maximum capacity for the
corresponding temperature as 1.

Two details here are important. If the battery exceeds

the maximum capacity value for the temperature, the SoC
displayed must equal 1, and the same is true for negative SoC
with a default value of 0. Also, as the battery degrades, the
capacity decreases, and the maximum capacity needs to be
updated to the current value of the corresponding battery and
reset when the battery is changed. It is crucial to note that
the data in those datasets does not contemplate this capacity
variation over time, so these two systems are not implemented
with new data in the experimental testing phase. The SoC can
be calculated as follows:

𝑆𝑜𝐶 =
𝑄(𝑡)
𝑄𝑡𝑜𝑡𝑎𝑙

(4)

𝑧(𝑡) = 𝑧(0) − 1
𝑄 ∫

𝑡

0
𝜂𝑖(𝜏) 𝑑𝜏 (5)

Equation 4, is presented as the SoC calculation. The Q
is the capacity at time t, and 𝑄𝑡𝑜𝑡𝑎𝑙 is the cell total capacity
in ampere seconds (coulombs) between 0% and 100%. In
equation 5, cell current is positive on discharge and negative
on charge. The 𝜂 is cell coulombic efficiency nearly 1, but
always less than 1. This estimation is called “coulomb count-
ing.” As we can see, it does not use the temperature, although
the temperature enunciates the SoC.

4.4 | State of Health

As explained earlier, the method used to calculate the SoH
is to know when the battery’s capacity reduces to 80% of
its nominal capacity. It is important to note that, due to the
limited amount of data in the second case that does not allow
us to trace a usage pattern to estimate its life, this test was not
performed; only the algorithm was tested.

Therefore, the equation below infers the SoH and if it is
necessary to replace the battery. The nominal capacity is
known; for example, the VRLA used in the second case is 300
Ah. After using the regressor, the output is the capacity value
in Ah. As such, by doing the same min-max equation of the
battery capacity when the battery’s SoC is at 1, it can get the
value of SoH. The min-max equation corresponding to SoH is
shown below. In this formula, C corresponds to the capacity
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displayed by the regressor, 𝐶𝑛𝑜𝑚 corresponds to the nominal
capacity, and if the SoH value is below 0.8, it indicates the
exchange.

𝑆𝑜𝐻 = 𝐶
𝐶𝑛𝑜𝑚

(6)

Knowing how the project of this paper performed the train-
ing, it is interesting to show the differences between this and
another application, where predicting when the battery re-
placement may be required. For that, it is necessary to use a
new capacity variable. This variable corresponds to the new
SoC value equal to 1 for the battery in use, as this battery can
still hold a SoC at one even without reaching the same 300
Ah again. This way, the new capacity variable calculates the
battery capacity drop over time, comparing the percentage
value that the new capacity holds against the nominal capacity.
Suppose this approach constantly updates the prediction of
the new battery capacity for different temperatures. In that
case, it can make a linear regression with temperature, time,
and this new capacity input.

4.5 | Data Preservation

Once all this data is generated, it is coupled to an internal edge
device database so it can easily export when required, and a
second backup and monitoring can be placed in the cloud;
for the test case, both kinds of backup were implemented.
Another important use of this data history is the use in the
further tuning of the RNN weights by a development team,
something that will also not be a burden due to the ease in this
re-training and in the time consumed, which is low - about
few minutes to train the new neural network.

5 | TESTS AND VALIDATION

This study has three tests to ensure the expected outcome
and validate the software, as shown in Fig. 5. The first test
evaluates the communication between the edge and the node
device. This test uses software deployed in python, where it
is possible to pair via BLE the edge device to a node device
in a notification configuration.

F I G U R E 5 Flowchart test’s goals

After that, this paper analyzed the accuracy performance
of the system in a VRLA battery and the time consumption,
studying the feasibility of building the system. In this stage,
a machine learning algorithm in Google Colab was created
with high precision, and python software was deployed with
the trained machine learning to an edge device, evaluating
the time consumption and testing the values to ensure the
calculations of the SoC had the expected outcome. The Fig.
4 shows the second stage.

The third stage of this study is to evaluate the feasibility
of this system in the future and build a benchmark of the
architecture. For that, the same structure seen in Fig. 4 is
repeated but now using a lithium battery dataset. This study
uses this approach because using this larger dataset can assure
that the accuracy will grow as the dataset of the VRLA battery
grows, so as this happens, the machine learning algorithm
will grow and still perform well. The second important point
is to evaluate if the time consumption in the edge device is
still lower than 1 minute, the time considered in this study to
allow the system to work without causing further problems in
synchronizing the readings and monitoring. The last crucial
point is that a lithium dataset well publicized as [29] can
provide a benchmark to evaluate whether this architecture
performs well considering other SoC studies.

One way to look at this lithium test is to visualize the
performance of the VRLA in the future, besides evidence of
the performance to a larger broad of use cases. To conclude,
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this study is built on the SoH calculation to find when the
battery’s maximum capacity will be reduced to 80% of the
nominal capacity. The batteries used for the VRLA test are
the battery 5 OPzV 250 [30]. Based on these batteries, was
generated the dataset [31], which was used in the VRLA test.

5.1 | Bluetooth Low Energy validation

To start the validation test, as the program assumes that the
edge device is receiving the reading values from the node
IoT, this must be validated first. So, a Python program was
built directly on the edge device. In this program, the edge
device turns on BLE, searches for nodes, and connects to
the selected device. The node selected - through advertising
-sends data to paired devices. The edge device then receives
this signal, converts it to data, and prints it already in data
format, validating the communication with the Pulga that
made the advertisement via BLE.

5.2 | State of Charge validation

After the BLE validation, it is necessary to validate the SoC
software. An important point here is that, for the data to be
better compared with other research papers, it is necessary to
perform the same training procedures with another database
where the number of readings and the variable dimensions
are the same. Therefore, the answers and metrics will be
analyzed using NASA’s "BatteryAgingARC" database [29].
This database enables this paper to compare the procedures
and results with research using lithium batteries, which have
more papers and data available.

As table 4 shows, the database has the values of voltage
measured at the terminal, current measured at the terminal,
temperature, voltage measured at the load, the current mea-
sured at the load, and time, respectively. The data processing
began by converting the time to time in seconds, starting at 0.
After that, the software creates the capacity variable by multi-
plying the average current between the current at the time "t"
and the current at the time "t-1" by the time in hours between
the same two values. The value of this average capacity is then
added to the previous capacity, thus completing the capacity
at the current time. Below is shown this equation. After that,
the software calculates the energy and power variables. For

TA B L E 4 Battery Aging Ames Research Center dataset
Vol (V) C (A) T (◦C) C_load (A) V_load (V) t (s)

3.873 -0.001 24.655 0.00 3.00 0
3.479 -4.030 24.666 -4.03 1.57 2532
4.000 1.512 24.675 1.50 4.72 5.5
4.012 1.509 24.693 1.50 4.74 8344
4.019 1.511 24.705 1.50 4.75 11125
4.025 1.512 24.718 1.49 4.75 13891
4.030 1.511 24.731 1.50 4.76 16672
4.035 1.510 24.741 1.50 4.76 19.5
4.039 1.507 24.759 1.50 4.77 22282
4.043 1.507 24.766 1.50 4.77 25063

training, the features are voltage measured at the terminal,
current measured at the terminal, temperature, time, energy,
and power, and the target is the capacity.

𝐶𝑡 = [
(𝐶𝑡 + 𝐶𝑡−1)

2
×

(𝑡𝑡 + 𝑡𝑡−1)
2

] + 𝐶𝑡−1 (7)

The best network combination acquired for SoC was a
dense RNN layer followed by three dense MLP layers and
one output MLP. The RNN has 500 neurons, and the MLP
networks have 500, 50, 10, and 1 neurons, respectively, all
activated by ReLU. At the same time, the RNN for the VRLA
is a 20-neuron RNN layer followed by a 5-neuron dense layer.

5.3 | Validation in the edge

As shown in Fig. 4, the VRLA battery software referenced
in the training section validated the performance in the edge
device. However, before exporting the program, still in Colab,
a trained neural network model was generated and saved. This
software was then changed to no longer read the database,
model the data, train, and infer the SoC; now, it loads the
neural network rather than train the model. This new software
was then deployed in Python to edge devices with the trained
neural network and the VRLA database.

This software was reproduced in the edge using the python
software and, from the data processing to the inference of
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the SoC, took 8 seconds. This time consumed is satisfactory,
considering the interval between a series of readings of the
node, its sleep, and waking up again for new readings is 5
minutes. This result validates the performance in the edge,
where the time consumed and the correctness of the data were
evaluated from end-to-end.

6 | RESULT ANALYSIS

As mentioned before, due to the small amount of data in the
VRLA database, obtaining more concrete results for compar-
ing the state-of-the-art systems is impossible, although as the
VRLA battery has many usage applications nowadays, it is
noteworthy. So, the system is compared in three ways: its per-
formance for its application, taking into account its metrics;
its performance concerning a more robust database, which
was done in the validation; and its performance concerning
state of the art. As metrics of state of the art, it was used
reference taken from [4]. It is indispensable to point out that
when analyzing the article [4], it was required to have a clear
distinction between Mean Absolute Error (MAE) and MAPE,
which could lead to a mistake in interpreting the results. The
values were certified, and [4] obtained an excellent margin
for state of the art with MAPE 0.3 to 1%, besides the static
errors with some analyzed works. A comparison of this paper
and the state of the art pointed out by [4] is seen at 5.

TA B L E 5 Comparing Results
MAPE

[29]Lí-íon Test 0.5

[4] Lí-íon Test 0.3

This article’s VRLA Test [31] 4.8

This article’s VRLA Test at SoC >10% 0.18

It is interesting to note the results here. The constructed
regressor does not perform in its prime for the entire discharge
cycle. This performance is because the database lacks repre-
sentativeness for the model to learn the battery pattern at a
small SoC. Some methods can be used to achieve better per-
formance for battery SoC at low levels; however, the VRLA
batteries are not meant to discharge by completion; this can

damage the battery, making another compelling reason not
to focus on this region of operation. The crucial thing is that
the battery must always be ready for the moment it will act
and should not be discharged at too low levels. This way, the
high precision for higher SoC values is more interesting. For
values above the critical state of SoC equal to 10%, the MAPE
of the regressor is only 0.18, which qualifies this system as
state-of-the-art for general cases.

For the model using the lithium-ion batteries database,
which can expand for a more significant number of scenarios,
the Mean Squared Error (MSE) was below 0.0001. The same
tests were performed for this database but with a different
amount of data. This test confirmed that the amount of data
enhances the system prediction as it increases, a positive point
for the primary VRLA battery model, which should present
even better results after more data is collected.

7 | CONCLUSION

This paper presented a BMS with edge computing that can
effectively infer the SoC using edge machine learning with-
out performance loss. The proposed BMS collects the main
battery parameters to infer the SoC and SoH values. It also
calculates power and energy that can help a maintenance team
regarding the battery’s physical condition and indicate the best
moment for maintenance or replacement. Besides, energy is
a valuable feature for optimization of the SoC inference. This
BMS also has high scalability - vertically and horizontally -,
and allows adjusting the number of batteries and configura-
tions in the bank. In order to minimize energy consumption
and increase the project’s scalability, it uses an edge system
with low-power IoT devices that can provide this efficiently.

The presented system has state-of-the-art MAPE, espe-
cially considering the expected performance area for VRLA
that can not be fully discharged. The software with the "Li-ion
Battery Aging Datasets" database, where it was possible to
obtain more research about SoC inference, still demonstrates
that this method brings good answers. The system should
have even better results as the amount of data grows, includ-
ing regarding low values of SoC for VRLA. It is important to
remember that the value of the state-of-the-art was analyzed
considering IoT lithium-ion battery works but using the cloud,
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which helps to create more complex algorithms capable of
obtaining even better results, and even algorithms run directly
on personal computers. Although those systems using a com-
puter or mandatory internet access were not considered fit
as a solution for this paper, they were considered to build a
state-of-the-art system.

This BMS can solve broad use cases, not only for the most
presented in a daily basis BMS applications but also in hard-
to-reach places in Brazil, such as isolated electrical substation.
This work made possible a system with the high precision of
machine learning without adding significant cost or energy
consumption, considering that the IoT edge device has 3 W
consumption and the node has energy harvesting. This model
still does not need cloud computing and adds an extra layer of
protection against possible attacks. Thus, it can still maintain
high precision in this process with the security of not having a
system susceptible to remote invasion, something fundamental
in a system that is essential to society.

It is worth mentioning that the SoC inference system re-
quires more practical tests, being validated at first only with
information from a database but not with actual data from
other batteries together, where the noises should be different
from the ones present in this database. Within the limitations,
it is considered a promising project with remarkable results
regarding the inferences for long-scale projects and reliability
to many use cases, but still with great possibilities for im-
provement, as mentioned, the potential to couple prescriptive
maintenance.

This paper does not address the prescriptive maintenance
deeply due to the necessity of more tests in the field, as in
the second test case of this paper, but it is safe to say that this
BMS can support the allocation of this function. The tests
performed for this conclusion used reinforcement learning
in a Double Q-Learning algorithm in a MatLab environment
deployed to the edge IoT in C++. This first validation test was
more concerned with the ability to perform the function than
the action performed by the reinforcement learning agent.

In the preliminary results, this paper presents a device that
fulfills its function and will have more performance tests for
a complete BMS using edge machine learning. This system
can also improve smart grid applications and even mobile and
personal computer SoC efficiency by its software thinking
method, possibly with a complex pre-trained machine learning

software deployment or a stacking method afterward for fine-
tuning. This study comprises precise SoC and SoH systems
on the edge and cloudless, supports complete BMS, saves
a considerable amount of energy, does not require Internet
for the main operation, has low cost for implementation, and
is still capable of improvements as the amount of collected
data advances. The next step is to evaluate the SoC under
different practical values and test the reinforcement learning
in the prescriptive maintenance function in the natural system
at the University of São Paulo in a controlled environment,
thus finalizing the BMS.

NO M E NC L AT U R E

BMS Battery Management
System

SoC State of Charge
SoH State of Health

VRLA Valve-Regulated
Lead Acid

IoT Internet of Things
RNN Recurrent Neural Network
DQN Double Q-Learning
NN Neural Network

KF-RNN Kalman Filter -
Recurrent Neural Network

Extended-KF Extended Kalman Filter
SVR-LR Supporting Vector Machine

- Linear Regressor
ES Electrical Substation
KF Kalman Filter

RAM Random-Access Memory
BLE Bluetooth Low Energy

NASA National Aeronautics and
Space Administration

MAPE Mean Absolute
Percent Error
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E Energy
P Power
t time

kWh Kilowatt-hour
ReLU Rectified Linear Unit

Ah Ampere-hour
Q Capacity

𝑄𝑡𝑜𝑡𝑎𝑙 Total Capacity
𝜂 Cell Coulombic Efficiency
C Capacity

𝐶𝑛𝑜𝑚 Nominal Capacity
Vol Voltage
C Current
T Temperature
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