References
  1. Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019 Apr 27;393(10182):1745-1759. doi: 10.1016/S0140-6736(19)30417-9.
  2. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, Callahan L, Copenhaver C, Dodge C, Felson D, Gellar K, Harvey WF, Hawker G, Herzig E, Kwoh CK, Nelson AE, Samuels J, Scanzello C, White D, Wise B, Altman RD, DiRenzo D, Fontanarosa J, Giradi G, Ishimori M, Misra D, Shah AA, Shmagel AK, Thoma LM, Turgunbaev M, Turner AS, Reston J. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res (Hoboken). 2020 Feb;72(2):149-162. doi: 10.1002/acr.24131.
  3. Neogi T, Felson D. Osteoarthritis and Rheumatoid Arthritis. In: Wall and Melzack’s Textbook of Pain. 6th edition. McMahon S, Koltzenburg M, Tracey I, Turk D, editors. 2013 Elsevier Saunders, Philadelphia, pp: 645-657.
  4. Schmelz M, Mantyh P, Malfait AM, Farrar J, Yaksh T, Tive L, Viktrup L. Nerve growth factor antibody for the treatment of osteoarthritis pain and chronic low-back pain: mechanism of action in the context of efficacy and safety. Pain. 2019 Oct;160(10):2210-2220. doi: 10.1097/j.pain.0000000000001625.
  5. Wise BL, Seidel MF, Lane NE. The evolution of nerve growth factor inhibition in clinical medicine. Nat Rev Rheumatol. 2021 Jan;17(1):34-46. doi: 10.1038/s41584-020-00528-4.
  6. Zhang RX, Ren K, Dubner R. Osteoarthritis pain mechanisms: basic studies in animal models. Osteoarthritis Cartilage. 2013 Sep;21(9):1308-15. doi: 10.1016/j.joca.2013.06.013.
  7. Grace PM, Hutchinson MR, Maier SF, Watkins LR. Pathological pain and the neuroimmune interface. Nat Rev Immunol. 2014 Apr;14(4):217-31. doi: 10.1038/nri3621.
  8. Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine. 2014 Dec;70(2):185-93. doi: 10.1016/j.cyto.2014.06.019.
  9. Ohashi Y, Uchida K, Fukushima K, Inoue G, Takaso M. Mechanisms of Peripheral and Central Sensitization in Osteoarthritis Pain. Cureus. 2023 Feb 22;15(2):e35331. doi: 10.7759/cureus.35331.
  10. De Diego-Adeliño J, Crespo JM, Mora F, Neyra A, Iborra P, Gutiérrez-Rojas L, Salonia SF. Vortioxetine in major depressive disorder: from mechanisms of action to clinical studies. An updated review. Expert Opin Drug Saf. 2022 May;21(5):673-690. doi: 10.1080/14740338.2022.2019705.
  11. Zuena AR, Maftei D, Alemà GS, Dal Moro F, Lattanzi R, Casolini P, Nicoletti F. Multimodal antidepressant vortioxetine causes analgesia in a mouse model of chronic neuropathic pain. Mol Pain. 2018 Jan-Dec;14:1744806918808987. doi: 10.1177/1744806918808987.
  12. Micov AM, Tomić MA, Todorović MB, Vuković MJ, Pecikoza UB, Jasnic NI, Djordjevic JD, Stepanović-Petrović RM. Vortioxetine reduces pain hypersensitivity and associated depression-like behavior in mice with oxaliplatin-induced neuropathy. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Dec 20;103:109975. doi: 10.1016/j.pnpbp.2020.109975.
  13. Adamo D, Pecoraro G, Coppola N, Calabria E, Aria M, Mignogna M. Vortioxetine versus other antidepressants in the treatment of burning mouth syndrome: An open-label randomized trial. Oral Dis. 2021 May;27(4):1022-1041. doi: 10.1111/odi.13602.
  14. Todorović M, Micov A, Nastić K, Tomić M, Pecikoza U, Vuković M, Stepanović-Petrović R. Vortioxetine as an analgesic in preclinical inflammatory pain models: Mechanism of action. Fundam Clin Pharmacol. 2022 Apr;36(2):237-249. doi: 10.1111/fcp.12737.
  15. Tomaz VS, Chaves Filho AJM, Cordeiro RC, Jucá PM, Soares MVR, Barroso PN, Cristino LMF, Jiang W, Teixeira AL, de Lucena DF, Macedo DS. Antidepressants of different classes cause distinct behavioral and brain pro- and anti-inflammatory changes in mice submitted to an inflammatory model of depression. J Affect Disord. 2020 May 1;268:188-200. doi: 10.1016/j.jad.2020.03.022.
  16. Talmon M, Rossi S, Pastore A, Cattaneo CI, Brunelleschi S, Fresu LG. Vortioxetine exerts anti-inflammatory and immunomodulatory effects on human monocytes/macrophages. Br J Pharmacol. 2018 Jan;175(1):113-124. doi: 10.1111/bph.14074.
  17. Lockwood SM, Lopes DM, McMahon SB, Dickenson AH. Characterisation of peripheral and central components of the rat monoiodoacetate model of Osteoarthritis. Osteoarthritis Cartilage. 2019 Apr;27(4):712-722. doi: 10.1016/j.joca.2018.12.017.
  18. Havelin J, Imbert I, Cormier J, Allen J, Porreca F, King T. Central Sensitization and Neuropathic Features of Ongoing Pain in a Rat Model of Advanced Osteoarthritis. J Pain. 2016 Mar;17(3):374-82. doi: 10.1016/j.jpain.2015.12.001.
  19. Yoneda S, Kasai E, Matsuo M, Tamano R, Sakurai Y, Asaki T, Fujita M. Duloxetine ameliorates the impairment of diffuse noxious inhibitory control in rat models of peripheral neuropathic pain and knee osteoarthritis pain. Neurosci Lett. 2020 Jun 11;729:134990. doi: 10.1016/j.neulet.2020.134990.
  20. Micov AM, Tomić MA, Todorović MB, Vuković MJ, Pecikoza UB, Jasnic NI, Djordjevic JD, Stepanović-Petrović RM. Vortioxetine reduces pain hypersensitivity and associated depression-like behavior in mice with oxaliplatin-induced neuropathy. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Dec 20;103:109975. doi: 10.1016/j.pnpbp.2020.109975.
  21. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J. 2008 Mar;22(3):659-61. doi: 10.1096/fj.07-9574LSF.
  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001 Dec;25(4):402-8. doi: 10.1006/meth.2001.1262.
  23. Hertler B, Hosp JA, Blanco MB, Luft AR. Substance P signalling in primary motor cortex facilitates motor learning in rats. PLoS One. 2017 Dec 27;12(12):e0189812. doi: 10.1371/journal.pone.0189812.
  24. Dimitrijević M, Kotur-Stevuljević J, Stojić-Vukanić Z, Vujnović I, Pilipović I, Nacka-Aleksić M, Leposavić G. Sex Difference in Oxidative Stress Parameters in Spinal Cord of Rats with Experimental Autoimmune Encephalomyelitis: Relation to Neurological Deficit. Neurochem Res. 2017 Feb;42(2):481-492. doi: 10.1007/s11064-016-2094-7.
  25. Hunter DJ, McDougall JJ, Keefe FJ. The symptoms of osteoarthritis and the genesis of pain. Rheum Dis Clin North Am. 2008 Aug;34(3):623-43. doi: 10.1016/j.rdc.2008.05.004.
  26. Orita S, Ishikawa T, Miyagi M, Ochiai N, Inoue G, Eguchi Y, Kamoda H, Arai G, Toyone T, Aoki Y, Kubo T, Takahashi K, Ohtori S. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord. 2011 Jun 16;12:134. doi: 10.1186/1471-2474-12-134.
  27. Stoppiello LA, Mapp PI, Wilson D, Hill R, Scammell BE, Walsh DA. Structural associations of symptomatic knee osteoarthritis. Arthritis Rheumatol. 2014 Nov;66(11):3018-27. doi: 10.1002/art.38778.
  28. Pecchi E, Priam S, Gosset M, Pigenet A, Sudre L, Laiguillon MC, Berenbaum F, Houard X. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain. Arthritis Res Ther. 2014 Jan 20;16(1):R16. doi: 10.1186/ar4443.
  29. Blaney Davidson EN, van Caam AP, Vitters EL, Bennink MB, Thijssen E, van den Berg WB, Koenders MI, van Lent PL, van de Loo FA, van der Kraan PM. TGF-β is a potent inducer of Nerve Growth Factor in articular cartilage via the ALK5-Smad2/3 pathway. Potential role in OA related pain? Osteoarthritis Cartilage. 2015 Mar;23(3):478-86. doi: 10.1016/j.joca.2014.12.005.
  30. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol. 2002 Oct;2(10):725-34. doi: 10.1038/nri910.
  31. Chang EJ, Im YS, Kay EP, Kim JY, Lee JE, Lee HK. The role of nerve growth factor in hyperosmolar stress induced apoptosis. J Cell Physiol. 2008 Jul;216(1):69-77. doi: 10.1002/jcp.21377.
  32. Jin Y, Lim CM, Kim SW, Park JY, Seo JS, Han PL, Yoon SH, Lee JK. Fluoxetine attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Brain Res. 2009 Jul 24;1281:108-16. doi: 10.1016/j.brainres.2009.04.053.
  33. Lu Y, Xu X, Jiang T, Jin L, Zhao XD, Cheng JH, Jin XJ, Ma J, Piao HN, Piao LX. Sertraline ameliorates inflammation in CUMS mice and inhibits TNF-α-induced inflammation in microglia cells. Int Immunopharmacol. 2019 Feb;67:119-128. doi: 10.1016/j.intimp.2018.12.011.
  34. Ala M, Mohammad Jafari R, Ala M, Agbele AT, Hejazi SM, Tavangar SM, Mahdavi SRM, Dehpour AR. Sumatriptan alleviates radiation-induced oral mucositis in rats by inhibition of NF-kB and ERK activation, prevention of TNF-α and ROS release. Arch Oral Biol. 2020 Nov;119:104919. doi: 10.1016/j.archoralbio.2020.104919.
  35. Dürk T, Panther E, Müller T, Sorichter S, Ferrari D, Pizzirani C, Di Virgilio F, Myrtek D, Norgauer J, Idzko M. 5-Hydroxytryptamine modulates cytokine and chemokine production in LPS-primed human monocytes via stimulation of different 5-HTR subtypes. Int Immunol. 2005 May;17(5):599-606. doi: 10.1093/intimm/dxh242.
  36. Zhao L, Huang J, Fan Y, Li J, You T, He S, Xiao G, Chen D. Exploration of CRISPR/Cas9-based gene editing as therapy for osteoarthritis. Ann Rheum Dis. 2019 May;78(5):676-682. doi: 10.1136/annrheumdis-2018-214724.
  37. LaBranche TP, Bendele AM, Omura BC, Gropp KE, Hurst SI, Bagi CM, Cummings TR, Grantham LE 2nd, Shelton DL, Zorbas MA. Nerve growth factor inhibition with tanezumab influences weight-bearing and subsequent cartilage damage in the rat medial meniscal tear model. Ann Rheum Dis. 2017 Jan;76(1):295-302. doi: 10.1136/annrheumdis-2015-208913.
  38. Yamada EF, Salgueiro AF, Goulart ADS, Mendes VP, Anjos BL, Folmer V, da Silva MD. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain. Int J Rheum Dis. 2019 Mar;22(3):399-410. doi: 10.1111/1756-185X.13450.
  39. Kotur-Stevuljević Jelena, Savić Jelena, Simić Milena, et al. Redox homeostasis, oxidative stress and antioxidant system in health and disease: the possibility of modulation by antioxidants. Vol. 73 No. Notebook 4 (2023): Archives of Pharmacy / 251-263.
  40. Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother. 2020 Sep;129:110452. doi: 10.1016/j.biopha.2020.110452.
  41. Moon SJ, Woo YJ, Jeong JH, Park MK, Oh HJ, Park JS, Kim EK, Cho ML, Park SH, Kim HY, Min JK. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthritis Cartilage. 2012 Nov;20(11):1426-38. doi: 10.1016/j.joca.2012.08.002.
  42. Gupta D, Prabhakar V, Radhakrishnan M. 5HT3 receptors: Target for new antidepressant drugs. Neurosci Biobehav Rev. 2016 May;64:311-25. doi: 10.1016/j.neubiorev.2016.03.001.
  43. Mousavizadeh K, Rahimian R, Fakhfouri G, Aslani FS, Ghafourifar P. Anti-inflammatory effects of 5-HT receptor antagonist, tropisetron on experimental colitis in rats. Eur J Clin Invest. 2009 May;39(5):375-83. doi: 10.1111/j.1365-2362.2009.02102.x.
  44. Veronesi F, Contartese D, Borsari V, Pagani S, Fini M, De Mattei M, Tschon M. Ageing and Osteoarthritis Synergically Affect Human Synoviocyte Cells: An In Vitro Study on Sex Differences. J Clin Med. 2022 Nov 30;11(23):7125. doi: 10.3390/jcm11237125.
  45. Sandkühler J. Spinal Cord Plasticity and Pain. In: Wall and Melzack’s Textbook of Pain. 6th edition. McMahon S, Koltzenburg M, Tracey I, Turk D, editors. 2013 Elsevier Saunders, Philadelphia, pp: 94-110.
  46. Yang JX, Wang HF, Chen JZ, Li HY, Hu JC, Yu AA, Wen JJ, Chen SJ, Lai WD, Wang S, Jin Y, Yu J. Potential Neuroimmune Interaction in Chronic Pain: A Review on Immune Cells in Peripheral and Central Sensitization. Front Pain Res (Lausanne). 2022 Jul 4;3:946846. doi: 10.3389/fpain.2022.946846.
  47. Cheng CF, Cheng JK, Chen CY, Lien CC, Chu D, Wang SY, Tsaur ML. Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury. Pain. 2014 May;155(5):906-920. doi: 10.1016/j.pain.2014.01.010.
  48. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji RR, Zhang J, Salter MW, Mogil JS. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci. 2015 Aug;18(8):1081-3. doi: 10.1038/nn.4053.
  49. Zychowska M, Rojewska E, Makuch W, Przewlocka B, Mika J. The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. Eur J Pharmacol. 2015 Feb 15;749:115-23. doi: 10.1016/j.ejphar.2014.11.022.
  50. Guo W, Miyoshi K, Dubner R, Gu M, Li M, Liu J, Yang J, Zou S, Ren K, Noguchi K, Wei F. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade. Mol Pain. 2014 Jun 9;10:35. doi: 10.1186/1744-8069-10-35.
  51. Yin J, Albert RH, Tretiakova AP, Jameson BA. 5-HT(1B) receptors play a prominent role in the proliferation of T-lymphocytes. J Neuroimmunol. 2006 Dec;181(1-2):68-81. doi: 10.1016/j.jneuroim.2006.08.004.
  52. Muscatello MRA, Zoccali RA, Pandolfo G, Mangano P, Lorusso S, Cedro C, Battaglia F, Spina E, Bruno A. Duloxetine in Psychiatric Disorders: Expansions Beyond Major Depression and Generalized Anxiety Disorder. Front Psychiatry. 2019 Oct 25;10:772. doi: 10.3389/fpsyt.2019.00772.
  53. Turan Yücel N, Kandemir Ü, Demir Özkay Ü, Can ÖD. 5-HT1A Serotonergic, α-Adrenergic and Opioidergic Receptors Mediate the Analgesic Efficacy of Vortioxetine in Mice. Molecules. 2021 May 28;26(11):3242. doi: 10.3390/molecules26113242.
  54. Nastić K, Pecikoza U, Labudović-Borović M, Kotur-Stevuljević J, Micov A, Jovanović A, Tomić M, Stepanović-Petrović R. The antidepressant drugs vortioxetine and duloxetine differentially and sex-dependently affect animal well-being, cognitive performance, cardiac redox status and histology in a model of osteoarthritis. Biomed Pharmacother. 2023 Oct;166:115360. doi: 10.1016/j.biopha.2023.115360.