References
[1] W. Bucci and N. Freedman, “The language of depression,”Bull. Menninger Clin. , vol. 45, no. 4, pp. 334–358, 1981, Accessed: Nov. 18, 2022. [Online]. Available: https://search.proquest.com/openview/d804439a2c70467603bbdf0c20a3f31a/1?pq-origsite=gscholar&cbl=1818298
[2] D. E. Losada and F. Crestani, “A test collection for research on depression and language use,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2016, vol. 9822 LNCS, pp. 28–39. doi: 10.1007/978-3-319-44564-9_3.
[3] W. Zaghouani, “A Large-Scale Social Media Corpus for the Detection of Youth Depression (Project Note),” in Procedia Computer Science , 2018, vol. 142, pp. 347–351. doi: 10.1016/j.procs.2018.10.483.
[4] A. Vij and J. Pruthi, “An automated Psychometric Analyzer based on Sentiment Analysis and Emotion Recognition for healthcare,” inProcedia Computer Science , 2018, vol. 132, pp. 1184–1191. doi: 10.1016/j.procs.2018.05.033.
[5] S. Almouzini, M. Khemakhem, and A. Alageel, “Detecting Arabic Depressed Users from Twitter Data,” in Procedia Computer Science , 2019, vol. 163, pp. 257–265. doi: 10.1016/j.procs.2019.12.107.
[6] A. Priya, S. Garg, and N. P. Tigga, “Predicting Anxiety, Depression and Stress in Modern Life using Machine Learning Algorithms,” in Procedia Computer Science , 2020, vol. 167, pp. 1258–1267. doi: 10.1016/j.procs.2020.03.442.
[7] J. L. Feuston and A. M. Piper, “Beyond the coded gaze: Analyzing expression of mental health and illness on instagram,”Proc. ACM Human-Computer Interact. , vol. 2, no. CSCW, Nov. 2018, doi: 10.1145/3274320.
[8] E. L. Murnane, T. G. Walker, B. Tench, S. Voida, and J. Snyder, “Personal informatics in interpersonal contexts: Towards the design of technology that supports the social ecologies of long-term mental health management,” Proc. ACM Human-Computer Interact. , vol. 2, no. CSCW, Nov. 2018, doi: 10.1145/3274396.
[9] J. A. Pater, B. Farrington, A. Brown, L. E. Reining, T. Toscos, and E. D. Mynatt, “Exploring indicators of digital self-harm with eating disorder patients: A case study,” Proceedings of the ACM on Human-Computer Interaction , vol. 3, no. CSCW. Association for Computing Machinery, Nov. 01, 2019. doi: 10.1145/3359186.
[10] X. Xu et al. , “Leveraging Routine Behavior and Contextually-Filtered Features for Depression Detection among College Students,” Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol. , vol. 3, no. 3, pp. 1–33, Sep. 2019, doi: 10.1145/3351274.
[11] A. Trifan, R. Antunes, S. Matos, and J. L. Oliveira, “Understanding depression from psycholinguistic patterns in social media texts,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2020, vol. 12036 LNCS, pp. 402–409. doi: 10.1007/978-3-030-45442-5_50.
[12] P. Mathur, R. Sawhney, S. Chopra, M. Leekha, and R. Ratn Shah, “Utilizing temporal psycholinguistic cues for suicidal intent estimation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2020, vol. 12036 LNCS, pp. 265–271. doi: 10.1007/978-3-030-45442-5_33.
[13] X. Wang, C. Zhang, Y. Ji, L. Sun, L. Wu, and Z. Bao, “A depression detection model based on sentiment analysis in micro-blog social network,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2013, vol. 7867 LNAI, pp. 201–213. doi: 10.1007/978-3-642-40319-4_18.
[14] A. Benton, M. Mitchell, and D. Hovy, “Multitask learning for mental health conditions with limited social media data,” in 15th Conference of the European Chapter of the Association for Computational Linguistics, EACL 2017 - Proceedings of Conference , 2017, vol. 1, pp. 152–162. doi: 10.18653/v1/e17-1015.
[15] L. Banovi´cbanovi´c, V. F. Fatori´c, and D. Rakovac, “How soon can we detect depression?” Accessed: Nov. 18, 2022. [Online]. Available: https://www.fer.unizg.hr/_download/repository/TAR-2019-ProjectReports.pdf#page=7
[16] M. Al-Mosaiwi and T. Johnstone, “In an Absolute State: Elevated Use of Absolutist Words Is a Marker Specific to Anxiety, Depression, and Suicidal Ideation,” Clin. Psychol. Sci. , vol. 6, no. 4, pp. 529–542, Jul. 2018, doi: 10.1177/2167702617747074.