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Abstract: Brain Computer Interfaces (BCI) based on electroencephalography (EEG) rely on1

multichannel brain signal processing. Most of the state-of-the-art approaches deal with covariance2

matrices, and indeed Riemannian geometry has provided a substantial framework for developing3

new algorithms. Most notably, a straightforward algorithm such as Minimum Distance to Mean4

yields competitive results when applied with a Riemannian distance or divergence. This applicative5

contribution aims at assessing the impact of several distances/divergences on real EEG dataset, as6

the invariances embedded in those distances/divergences have an influence on the classification7

accuracy. Riemannian centers of classes compare favorably with respect to Euclidean ones both8

in term of quality of results and of computational load. Riemannian distances cope with signal9

variabilities and reduce the adverse effect of artifacts in EEG signal.10

Keywords: Riemannian geometry; Divergences; Centroids; covariance matrices; EEG; SSVEP; BCI11

1. Introduction12

Brain-Computer Interfaces (BCI) allow interaction with a computer or a machine without relying13

on the user’s motor capabilities. In rehabilitation and assistive technologies, BCI offer promising14

solutions to compensate for physical disabilities. To record brain signals in BCI systems, the most15

common choice is to rely on electroencephalography (EEG) [1], as the recording systems are smaller16

and less expansive than other brain imaging technologies (such as MEG or fMRI). BCI systems rely on17

different brain signals, such as event-related desynchronization or evoked potentials. The former is18

observed in the premotor cortex when the subject imagines moving some part of his own body (also19

known as Motor Imagery paradigm) and the latter qualifies the brain response to a specific sensory20

stimulation, usually visual or auditory. This contribution concentrates on Steady-State Visually21

Evoked Potentials (SSVEP), which are potentials emerging when a subject concentrates his attention22

on a stimulus blinking with a given frequency. Shortly after the user concentrates on this stimulus,23

brain waves in visual cortex could be observed with matching frequencies. To date, BCI still faces24

challenges and a major limitation is the EEG poor spatial resolution. This limitation is due to the25

volume conductance effect [1], as the skull bones act as a non-linear low pass filter, mixing the brain26

source signals and thus reducing the signal-to-noise ratio. Consequently, spatial filtering methods27

have been developed or adopted, such as xDAWN [2] or Independent Component Analysis (ICA) [3].28

Spatial filters are very efficient on clean datasets obtained from strongly constrained environment but29

they are sensitive to artifacts and outliers [4]. Instead, approaches based on covariance matrices, such30
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as CSP [5] and Canonical Correlation Analysis [6] offer a much more robust framework. Covariance31

matrices being Symmetric and Positive-Definite (SPD), tools offered by Riemannian geometry have32

been recently explored with promising results.33

A classification technique referred to as minimum distance to Riemannian mean (MDRM) has been34

recently introduced to EEG classification [7]. It entirely relies on covariance matrices and the fact35

that they belong the manifold of SPD matrices. New EEG trials are assigned to the class whose36

average covariance matrix is the closest to the trial covariance matrix according to the affine-invariant37

Riemannian metric [8]. It is a simple, yet robust classification scheme outperforming complex and38

highly parametrized state-of-the-art classifiers. The limitations of using Euclidean metrics in the39

computation of distances between SPD matrices and their means have been demonstrated [9]. Using40

information geometry, a number of Riemannian distances and divergences have been developed and41

appropriately used on SPD matrices [9,10]. The present work applies some of these distances to42

SSVEP data, providing a practical analysis and a comparison with Euclidean metrics.43

Moreover, most applications of Riemannian geometry to BCI are thus far focusing only on44

Motor Imagery (MI) paradigm. Riemannian BCI is well suited for MI experiment as the spatial45

information linked with synchronization are directly embedded in covariance matrices obtained46

from multichannel recordings. However, for BCI that rely on evoked potential such as SSVEP47

or event-related potential, as P300, frequency or temporal information are needed. In [11], the48

authors propose a rearrangement of the covariance matrices that embed the timing or the frequency49

information, thus allowing a direct application of the Riemannian framework. This contribution relies50

on this rearrangement to apply MDRM on covariance matrices of SSVEP signals. The signals are51

recorded in an application of assistive robotics where an SSVEP-based BCI is used in tandem with a52

3D touchless interface based on IR-sensors as a multimodal system to control an arm exoskeleton [12].53

The paper is organized as follows: Section 2 describes the framework for the classification of54

covariance matrices. It first presents the basic principles of classification 2.1. It then describes how55

means of covariance matrices are computed 2.2. Since the notion of distance is key in the computation56

of the mean, a number of useful distances and divergences are subsequently presented ??. Section 257

ends with the presentation of the MDM algorithm which is the classification method used in this58

work 2.3. In Section 3, the classification results obtained on real EEG dataset are presented and59

discussed. Section 4 concludes this paper.60

2. Classification of covariance matrices for SSVEP61

62

2.1. fundamentals of classification63

Given labelled samples xi drown from two populations (positive and negative), a simple
classification algorithm consists in assigning a previously unseen sample to the class with closer
mean[ref: fig]. This implies a computation of means of classes and a measure of distances from
the means. Assuming that the samples are embedded into a dot product space (i.e. with Euclidean
geometry), the means can be computed as:

c+ =
1

m+
∑

{i|yi=+1}
xi, (1)

c− =
1

m−
∑

{i|yi=−1}
xi, (2)

where yi is the label of sample xi; m+ and m− the number of positive and negative samples64

respectively. An unseen sample x is unsigned to the class whose mean is the closest. This simple65

geometric classification framework is the founding principle of more complex algorithms such as66

supporting vector machines. It can be formulated in terms of the dot product 〈·, ·〉:67
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If c := (c+ + c−)/2 is the point lying halfway between c+ and c−, and w := c+ − c− the vector
connecting c+ to c−, the class of the unseen sample x is determined by checking whether the vector
x− c connecting c to x makes an angle α < π/2 with w [ref: fig]. This is expressed as:

y = sgn 〈(x− c), w〉
= sgn 〈(x− (c+ + c−)/2), (c+ − c−)〉
= sgn(〈x, c+〉 − 〈x, c−〉+ b)

(3)

The offset b vanishes if class means are equidistant to the origin [13]. Inserting (1) and (2) in (3) yields

y = sgn

 1
m+

∑
{i|yi=+1}

〈x, xi〉 −
1

m−
∑

{i|yi=−1}
〈x, xi〉+ b

 (4)

Classifier (4) can be generalized as

y = sgn

(
m

∑
i=1

yiαid(x, xi) + b

)
(5)

where αi is the weight of sample xi and d(·, ·) a distance, a divergence of a kernel. In the case of two68

classes in the dot product space where all samples have the same weight, yi ∈ {+1,−1}, α = 1/m69

and d(·, ·) = 〈·, ·〉.70

Expression (5) corresponds to the decision function used in hyperplane classifiers [13]. This71

shows that even more complex classifiers rely on the calculations of class means (or centers) and their72

distances to individual samples. This being shown, in this article we focus on the simple classification73

approach of assigning a previously unseen sample to the class with closest mean.74

In machine learning algorithms, samples are represented by their features which are determined75

through a feature extraction and selection process. In this work, samples are represented by their76

covariance matrices. Therefore means of classes and distances to mean will be means of covariance77

matrices and distance between them.78

2.2. Means of Covariance matrices79

Consider a multivariate variable X ∈ RC×N where C is the number of variables and N the
number of samples, with C > N, the covariance matrix of X which can be estimated as

Σ̂ =
1
N

XXᵀ (6)

is symmetric positive definite (SPD). The properties of SPD matrices constrain them to a convex cone:80

(i) Symmetry: Σ = Σᵀ
81

(ii) Positive definiteness: xᵀΣx > 0, ∀x ∈ RC\082

(iii) Strict positivity of diagonal element: Σij > 0|i = j, ∀i, j ∈ {1, . . . , C} i.e. positive variance.83

(iv) Cauchy-Schwarz inequalities: |Σij| ≤ (ΣiiΣjj)
1/2, ∀i, j ∈ {1, . . . , C}84

The mean of SPD matrices can be computed as a center of mass modeled on Euclidean geometry:
given a set of covariance matrices {Σi}i=1,...,I , the center of mass Σ̄ of the set, is a covariance matrix
that minimizes the sum of the squared distances to matrices Σi:

Σ̄ = µ(Σ1, . . . , ΣI) = arg min
Σ∈MC

I

∑
i=1

d2(Σi, Σ) , (7)

where d(·, ·) is a measure of distance between two matrices. practically, d(·, ·) can either be a distance85

or a divergence. In the literature, this mean is at times designated as the Frechet mean, Cartan mean, or86
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Karcher mean 1 [15]. Cartan [16] had shown that a unique solution to (7) exists if all Σi lie in a convex87

ball [section 16 of 16]. This applies also to closed convex cones.88

Depending on the divergence or distance used, several means can be defined from (7). Those89

considered in this study are presented in the next lines and summarized in Table 190

91

2.2.1. Distance and divergence92

Divergences and distances are measures of dissimilarity between two points in a space. Here93

the Riemannian space will be considered. A distance function d : M×M → R+ has the following94

properties for all Σ1, Σ2, Σ3 ∈ M:95

(i) d(Σ1, Σ2) ≥ 0 non-negativity96

(ii) d(Σ1, Σ2) = 0 iff Σ1 = Σ2 identity97

(iii) d(Σ1, Σ2) = d(Σ2, Σ1) symmetry98

(iv) d(Σ1, Σ3) ≤ d(Σ1, Σ2) + d(Σ2, Σ3) triangular inequality99

Divergences are very similar to distances with the difference that properties (iii) and (iv) do not have100

to be satisfied. In the context of Covariance matrices, divergences and distances should both induce101

a Riemannian metric on the manifold of SPD matrices.102

2.2.2. Euclidean distance103

The Euclidean distance between two matrices is represented by the Frobenius norm of their
difference:

dE(Σ1, Σ2) = ‖Σ1 − Σ2‖F (8)

In (7), this yields the arithmetic mean:

Σ̄E =
1
I

I

∑
i=1

Σi (9)

The arithmetic mean is drown from a family of power means (Σt|t=1)

Σt =

(
1
I

I

∑
i=1

Σt
i

) 1
t

, t ∈ [−1,+1]. (10)

From the same family can be drown the geometric mean (Σt|t→0) and the harmonic mean (Σt|t=−1). We104

consider the arithmetic mean Σ̄E, as a baseline. This averaging of covariance is usually not adequate105

in the space of SPD matrices for 2 main reasons. First the Euclidean distance and averaging do not106

grantee invariance under inversion: a matrix and its inverse are supposed to be at the same distance107

from the identity matrix. Secondly the Euclidean averaging of covariance SPD leads to a swelling108

effect: the determinant of the arithmetic mean of SPD matrices can be larger than the determinant of109

its individual components. And since the determinant of a covariance matrice is a direct measure110

of the dispersion of the multivariate variable, the swelling effect introduces a large distortion of the111

data dispersion [9]. For these reasons, other means that adapt to the geometry of convex cone of SPD112

matrices are used.113

2.2.3. Affine Invariant distance114

The affine invariant distance between two points is defined by the length of the curve connecting
these point on the Riemannian manifold. A differential manifold is a topological curved space that is
locally similar to the Euclidean space and is differentiable globally. The convex cone of SPD matrices

1 This appellations have been recently criticized by Karcher himself [14]
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is a manifold that can be endowed with a Riemannian metric; such manifolds are called Riemannian
manifold. Let M be a Riemannian manifold, and TΣM its tangent space defined on point Σ. A
Riemannian metric d is a family of inner product defined on the tangent spaces defined on each point
Σ of the Manifold. This inner product varies smoothly from point to point on the manifold,

dΣ : TΣM× TΣM→ R

d is a function that assigns, for each point Σ ∈ M, an inner product in the tangent space TΣM .
The Riemannian metric allows us to compute the length of vectors or distance between two point on
the tangent space, and through appropriate mapping [17], the length of the corresponding geodesic
(i.e. the shortest curve connecting two point) on the manifoldM. The affine invariant distance is the
distance between two point of a Riemannian manifold endowed with an invariant Riemannian metric

gΣ(Θ1, Θ2) = 〈Θ1|Θ2〉Σ
=
〈

Σ−
1
2 Θ1Σ−

1
2 |Σ−

1
2 Θ2Σ−

1
2

〉
I

= trace
(

Σ−
1
2 Θ1Σ−1Θ2Σ−

1
2

) (11)

The inner product of the tangent vectors Θ1 and Θ2 at Σ is invariant by the action of Σ−
1
2

transformation. The affine-invariant Riemannian distance is defined as:

dAI(Σ1, Σ2) = ‖log(Σ−1
1 Σ2)‖F =

[
C

∑
c=1

log2 λc

]1/2

, (12)

where λc, c = 1, . . . , C, are the eigenvalues of Σ−1
1 Σ2.115

Inserting (12) in (7) yields the mean Σ̄AI associated to the affine-invariant metric. It is the solution
to

I

∑
i=1

log(Σ̄−1/2
AI ΣiΣ̄

−1/2
AI ) = 0 (13)

It has no close form solution and can be solved iteratively through a gradient descent algorithm [? ].116

These distance and mean are invariant to affine transformations. Some of these invariances117

are particularly important to preserve the geometric topology of the Riemannian manifold of SDP118

matrices: Let f be an affine invariant function defined onM (e.g. distance or mean),119

(i) Invariance under congruent transformation

f (Σ1, Σ2) = f (ΣΣ1Σᵀ, ΣΣ2Σᵀ) (14)

(ii) Invariance under inversion
f (Σ, I) = f (Σ−1, I) (15)

where I is the identity matrix. This implies that

f (Σ1, Σ2) = f (Σ−1
1 , Σ−1

2 ) (16)

Another interesting property of the affine-invariant metric is its invariance to left- and
right-multiplication by a positive matrix.

f (Σ1, Σ2) = f (ΣΣ1, ΣΣ2) = f (Σ1Σ, Σ2Σ) (17)

120
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2.2.4. Log-Euclidean121

The Log-Euclidean is another distance that takes into consideration the topology of Riemannian
manifolds. It was introduced by Arsigny et al. to alleviate the complexity involved in the computation
of the affine-invariant distance and its related mean [9]. The mean associated to the Log-Euclidean
distance corresponds to an arithmetic mean in the domain of matrix algorithm. The distance between
two SPD matrices is expressed as

dLE(Σ1, Σ2) = ‖log(Σ1)− log(Σ2)‖F (18)

Its associated mean is defined explicitly:

Σ̄LE = exp

(
I

∑
i=1

log(Σi)

)
(19)

Unlike the affine-invariant mean, the Log-Euclidean mean as a closed form expression which gives122

it a large computational advantage. Moreover, the obtained mean is, to a large extent, similar to the123

affine-invariant mean:124

(i) They have the same determinants which correspond to the geometric mean of the determinants
of their building matrices:

|Σ̄LE| = |Σ̄AI| =
I

∏
i=1

(|Σi|)1/I = exp(
1
I

I

∑
i=1

log(|Σi|))

(ii) They are often equal in value, if not, trace(Σ̄LE) > trace(Σ̄AI)125

(iii) Log-Euclidean mean has properties close to affine-invariance (i.e. similarity-invariance instead126

of congruent-invariance).127

128

2.2.5. Bregman divergences129

Divergences have been considered for the computation of mean in applications of clustering and
classification of SPD matrices due to the fact that they induce a Riemannian metric biven by (11).
Consider a strictly convex and differentiable function f : R → R; then f (x) ≥ f (y) + f ′(y)(x − y)
and f (x) = f (y) + f ′(y)(x − y) ⇔ x = y for all x, y ∈ R. The Bregman divergence, [introducde by
Bregman in 18] is the difference between the left and right sides of the inequality:

Df(x, y) = f (x)− f (y)− f ′(y)(x− y). (20)

f is called a seed function. It is shown that Df verifies the non-negativity and the identity properties.130

When the seed function is quadratic, it can also be symmetric. There is another set of properties131

that Df verifies, they are reported in [18]. Geometrically, the Bregman divergence can be seen as132

the measure of the difference between f (x) and its representation on the plane tangent to f at y as133

illustrated in figure 1.134

The scalar divergence can be directly adapted to SPD matrices as:

Df(Σ1, Σ2) = ϕ(Σ1)− ϕ(Σ2)− ϕ′(Σ2)(Σ1 − Σ2), (21)

where the seed function f is combined with a function λ : M → RC that maps an SPD matrix to a
vector containing its eigenvalues: ϕ = f ◦ λ.
Or, λ can be the trace function, λ : M → R that maps an SPD matrix to its trace. For convenience,
f ◦ λ will be referred to as f (X) or f (Σ). Depending on the seed function used, various divergences
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Figure 1. Geometry of the Bregman divergence with the seed function f (z) = 1
2 zᵀz. h(z) is a

hyperplane tangent to f (z) at y. While it accuratly represent f (y), it underestimate f (x). The Bregman
divergence measure how much the the representation of f (x) on h(z) diverges from f (x).

can be defined defined from the Bregman divergence.

Euclidean divergence
The Frobenius norm is also a Bregman divergence in disguise. It is obtained when the seed function
is the squared norm f (x) = 1

2‖x‖2
2 [19].

DE(Σ1, Σ2) = ‖Σ1 − Σ2‖F (22)

The Euclidean mean of SPD matrices correspond to their arithmetic mean (9).

Kullback-Leibler divergence
Using the Shannon entropy f (x) = ∑i xi log xi yields the Kullback-Leibler divergence [20]. It is also
known as the relative entropy or discrimination information. The Kullback-Leibler divergence of SPD
matrices Σ1, Σ2 ∈ MC is given by:

DKL(Σ1, Σ2) =
1
2

log
det(Σ2)

det(Σ1)
+ tr(Σ2Σ1)− C (23)

The mean of SPD matrices Σi ∈ MC induced by the Kullback-Leibler divergence is calculated
iteratively [21].

Log-det divergence
Another function often used in Bregman divergences of symmetric matrices is the logarithmic barrier
[19,21–23]

f (x) = −log(x)→ f (Σ) = − log det(Σ)

The corresponding divergence is called the log-det divergence and is given by [21]:

Dld(Σ1, Σ2) =
〈

Σ1, Σ−1
2

〉
− log det(Σ1Σ−1

2 )− C (24)

135

The asymmetry of divergences result in the concept of right- and left-sided mean:

Df(Σ1, Σ2) 6= Df(Σ2, Σ1)⇒ arg min
Σ∈MC

I

∑
i=1

d2(Σi, Σ) 6= arg min
Σ∈MC

I

∑
i=1

d2(Σ, Σi)
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It is usually sufficient to consider a single sided divergence. In this work right sided-divergence
and mean are used. In some cases however, the asymmetry can be undesirable. This has led to the
symmetrization of some Bregman divergences. Often the symmetrization consist in an averaging of
left- and right-sided divergence.

S-divergence
An example of a symmetric divergence is the S-divergence. It is obtained from the Jensen-Shannon
divergence which is a symmetrized Bregman divergence:

DJ-S(Σ1, Σ2) =
1
2

(
Df(Σ1,

Σ1 + Σ2

2
) + D(

Σ1 + Σ2

2
, Σ2)

)
=

1
2
(tr f (Σ1) + tr f (Σ2))− tr f (

Σ1 + Σ2

2
)

(25)

The S-divergence is obtained by using the logarithmic barrier function for the positive definite cone
f (Σ) = − log det(Σ) as seed in DS-J [23]:

÷ S(Σ1, Σ2) = log det(
Σ1 + Σ2

2
)− 1

2
log det(Σ1Σ2) (26)

Despite its symmetry, S-Divergence is not a metric. It does not satisfy the triangular inequality136

criterion. However, its square root has been shown to be a distance [23].137

Other symmetric divergences can be obtained in the same fashion; for instance the Jeffreys138

divergence which is a symmetrized Kullback-Leibler divergence: DJ(Σ1, Σ2) = DKL(Σ1, Σ2) +139

DKL(Σ2, Σ1) [23].140

Another family of divergence is defined when the right- and left-sided divergence are mixed in
a weighted manner. One such family is the α-divergence [24].

Log-det α-divergence
In this work, the α-divergence used is defined by [21]:

Dα
f (Σ1, Σ2) =

4
1− α2

[
1− α

2
f (Σ1) +

1 + α

2
f (Σ2)− f

(
1− α

2
Σ1 +

1 + α

2
Σ2

)]
, α2 6= 1 (27)

Dα
f can be expressed in terms of Bregman divergence as:

Dα
f =

4
1− α2

[
1− α

2
Df

(
Σ1,

1− α

2
Σ1 +

1 + α

2
Σ2

)
+

1 + α

2
Df

(
Σ2,

1− α

2
Σ1 +

1 + α

2
Σ2

)]
, α2 6= 1

(28)
α-divergences at α = ±1 are obtained through the limit values limα→±1 Dα

f .
Using the logarithmic-barrier function yields:

Dα
LD(Σ1, Σ2) =

4
1− α2 log det

(
1− α

2

(
Σ1Σ−1

2

) 1+α
2

+
1 + α

2

(
Σ2Σ−1

1

) 1−α
2
)

, −1 < α < 1

D1
LD(Σ1, Σ2) = tr

(
Σ−1

2 Σ1 − I
)
− log det

(
Σ−1

2 Σ1

)
D−1

LD(Σ1, Σ2) = tr
(

Σ−1
1 Σ2 − I

)
− log det

(
Σ−1

1 Σ2

) (29)

D1
LD and D−1

LD are right- and left-sided Bregman divergences respectively.141

At α = 0, the log-det α divergence yields a symmetric divergence corresponding to the Bhattacharrya142

divergence [21,23].143
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Table 1. Distances, divergences and means considered in the experimental study.

Distance/Divergence Mean References

Euclidean dE(Σ1, Σ2) = ‖Σ1 − Σ2‖F Σ̄E = 1
I ∑I

i=1 Σi

Log-Euclidean dLE(Σ1, Σ2) = ‖log(Σ1)− log(Σ2)‖F Σ̄LE = exp
(

∑I
i=1 log(Σi)

)
[9]

Affine-invariant dAI(Σ1, Σ2) = ‖log(Σ−1
1 Σ2)‖F Algorithm 3 in [25] [8? ]

Kullback-Leibler DKL(Σ1, Σ2) =
1
2 log det(Σ2)

det(Σ1)
+ tr(Σ2Σ1)− C Algorithm 1 in [21] [21,26]

S-divergence DS(Σ1, Σ2) = log det(Σ1+Σ2
2 )− 1

2 log det(Σ1Σ2) Eq. (17-20) in [22] [22,23]

α-divergence Dα
LD(Σ1, Σ2) from Eq. (29) Algorithm 1 in [21] [21]

Bhattacharyya DB(Σ1, Σ2) =

(
log det 1

2 (Σ1+Σ2)

(det(Σ1)det(Σ2))1/2

)1/2
Algorithm 1 in [21] [21,27]

Wasserstein

2.2.6. Wasserstein144

2.3. Minimum Distance to Mean classifier for SSVEP145

The considered classifier is described in section 2.1. It is given the name Minimum Distance to
Mean or MDMclose, and was inspired from [7] where it is limited to Riemannian mean. Covariance
matrices of EEG trials are classified based on their distance to the centers of the classes (i.e. means
or centroids). To embed frequency information in the covariance matrices, we use a construction of
matrices proposed in [11]. Let X ∈ RC×N be an EEG trial measured on C channels and N samples in
a SSVEP experiment with F stimulus blinking at different frequencies. The covariance matrices are
estimated from a modified version of the input signal X:

X ∈ RC×N →


Xfreq1

...
XfreqF

 ∈ RFC×N , (30)

where Xfreq f
is the input signal X band-pass filtered around frequency freq f , f = 1, . . . , F. Henceforth,146

all EEG signals will be considered as filtered and modified by Eq. (30). The associated covariance147

matrix Σ ∈ RFC×FC is estimated using the Schäfer skrinkage estimator [28].148

For SSVEP classification, K = F + 1 classes are considered: one class for each target frequency,149

and one for the resting state. As described in Algorithm 1, from I labelled training trials {Xi}I
i=1150

recorded per subject, K centers of classes Σ̄(k) are estimated (step 3). In this step, outliers matrices are151

removed to have a reliable mean estimation [? ]. A new unlabeled test trial Y is predicted to belong to152

the class whose mean Σ̄(k) is the closest to the trial covariance matrix, w.r.t. one of the distances from153

Table 1 (step 5).154

Algorithm 1 Minimum Distance to Mean Classifier

Inputs: Xi ∈ RFC×N , for i = 1, . . . , I, a set of labelled EEG trials.
Inputs: I(k), a set of indices of trials belonging to class k.
Input: Y ∈ RFC×N , an unlabeled test EEG trial.
Output: k∗, the predicted label of Y.

1: Compute covariance matrices Σi of Xi
2: for k = 1 to K do
3: Compute center of class : Σ̄(k) = µ(Σi : i ∈ I(k))
4: end
5: Compute covariance matrix Σ of Y, and classify it : k∗ = arg mink d(Σ, Σ̄(k))
6: return k∗
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3. Experimental Results155

This section presents experimental results obtained applying Euclidean and Riemannian156

distances in SSVEP classification task. The first part of this section describes the data used and the157

second part provides the assessment of the classification for the considered distances and divergences.158

3.1. SSVEP Dataset159

The experimental study is conducted on multichannel EEG signals recorded during an160

SSVEP-based BCI experiment [12]. EEG are recorded on C = 8 channels from 12 subjects. The subjects161

are presented with F = 3 visual target stimuli blinking respectively at 13Hz, 21Hz and 17Hz. It is a162

K = 4 classes setup combining F = 3 stimulus classes and one resting class (no-SSVEP). In a session,163

32 trials are recorded: 8 for each visual stimulus and 8 for the resting class. The number of sessions164

recorded per subject varies from 2 to 5. For each subject, a test set is made of 32 trials while the165

remaining trials (which might vary from 32 to 128) make up for the training set.166

3.2. Results and Discussion167

Discuss the invariance to right- and left-multiplication by positive matrices. It brings a168

significanc advantage over Euclidean metrics, in terms of electrode placement and unforseen169

displacement in electrodes position, and can even alleviate anatomical differences.

Resting class 13 Hz class

21 Hz class 17 Hz class

(a)

Resting class 13 Hz class

21 Hz class 17 Hz class

(b)

Figure 2. Representation of covariance matrices: each image is the covariance matrix mean Σ̄(k) of
the class k, for one session of the recording. The diagonal blocks show the covariance in different
frequency bands, i.e. 13Hz in the upper-left block, 21Hz in the middle, and 17Hz in the bottom-right.
Subjects with highest (a) and lowest (b) BCI performance.

170

The covariance matrices obtained from SSVEP data extended with Eq. (30) have interesting171

features, allowing the discrimination between signals of identical sources but with different172

frequencies. Fig. 2 shows the K classes mean covariance matrices Σ̄(k) from subjects with the highest173

(a) and lowest (b) classification accuracies. The three 8×8 diagonal blocks hold the covariance174

matrices of the F = 3 target frequencies. Inter-frequencies covariances blocks are almost null. In175

each mean covariance matrix, the block holding the covariance of the target frequency has the largest176

values. For the resting class, all F blocks tend to have similar and small values. These features177

are more visible in the subject with the highest classification accuracy, and less visible in the one178

with lowest classification accuracy. It is interesting to see that features used for classification have179

a physiological meaning allowing an intuitive understanding, as opposed to black-boxes approaches180

such as LDA or SVM. EEG processing complexity is encoded by the distance and not by machine181

learning.182
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Based on those covariance matrices, the different distances and means of Table 1 are compared183

in terms of classification accuracy and average CPU time elapsed on a trial classification, which184

involves the computation of 4 means of class and a distance to each mean. Table 2 summarizes results185

obtained for each subject and each distance/divergence. Euclidean distance yields drastically low186

accuracy. This support the fact that using Euclidean distance and Arithmetic mean on SPD matrices187

is not appropriate. This is generally attributed to the invariance under inversion and the fact that the188

determinant of the Arithmetic mean of SPD matrices can be larger than the determinant of its parts; it189

is referred to as the swelling effect. Since the value of the determinant is a direct measure of dispersion190

of the multivariate variables (i.e. EEG channels and frequency bands), it leads to poor discrimination191

in the classification task. The swelling effect of Arithmetic mean is shown in Fig. 3(a): the determinant192

of the Arithmetic mean is strictly larger than other means, the Log-Euclidean, Affine-Invariant and193

Bhattacharyya ones yielding similar determinants, close to trials values.194
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Figure 3. (a): Swelling effect of Arithmetic mean shown through log-determinant values. Training
trials are taken from the 13Hz class of the subject with the highest BCI performance. Log-determinant
values are given for each trial covariance (points), and for means of Table 1 (horizontal lines). (b):
Classification accuracy and CPU time, obtained with α-divergence for −1 6 α 6 1.

Riemannian distances significantly improve classification performances, with α-divergence195

yielding the best results (81.56%). The value of α was set to 0.6 through cross-validation. This196

procedure lasted 225.42 seconds and makes α-divergence the most costly method, due to the197

optimization of its parameter α. Log-Euclidean yields lower classification accuracy (average 78.98%)198

but could be computed faster than α-divergence or Affine-Invariant distance. However, the199

Bhattacharyya distance has the lowest computational cost of the considered Riemannian distances200

(average CPU time 0.140s), with a higher average accuracy of 80.51%. So, it is good trade-off between201

efficiency and speed. The accuracies and CPU time of the α-divergence at different values of α are202

shown in Fig. 3(b). It is seen that for α = ±1, where α-divergence represents a Bregman divergence203

associated with the log-determinant function, the classification accuracy are at the lowest accuracy204

(25%). For all other values of alpha, the expected accuracy is 78.85±3.3% and one can choose205

−1 < α < 1 without any major impact on classification results.206

This experiment on real EEG data shows that it is crucial to process covariance matrices with207

dedicated Riemannian tools, impacting the efficiency of the classification.208

4. Conclusion209

Riemannian approaches have been successfully applied on EEG signals for brain computer210

interfaces. Straightforward algorithms, such as Minimum Distance to Mean, provide competitive211
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results with state-of-the-art methods, without requiring meticulous parametrization or optimization.212

Working on covariance matrices in Riemannian spaces offers a wide choice of distances, embedding213

desirable invariances: it is thus possible to avoid the computation of user-specific spatial filters which214

are sensitive to artifacts and outliers. Nonetheless, the estimation of the Riemannian geometric mean215

has a strong impact on the classifier accuracy. This study investigates the performance of several216

distances and divergence on a real EEG dataset in the context of BCI based on the SSVEP paradigm.217

The experimental results indicate that the α-divergence yields the best accuracy after the selection of218

the best α values, but the Bhattacharyya distance has the lowest computational cost while providing219

honorable accuracies.220

Supplementary Materials: The following are available online at www.mdpi.com/link, Figure S1: title, Table S1:221

title, Video S1: title.222
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