References
Abdel-Salam, O. M., & Mózsik, G. (2023). Capsaicin, the vanilloid receptor TRPV1 agonist in neuroprotection: mechanisms involved and significance. Neurochemical Research48 (11), 3296-3315.‏
Al-Kuraishy, H. M., Al-Gareeb, A. I., Alexiou, A., & Batiha, G. E. S. (2023). Cannabinoids receptors in COVID-19: perpetrators and victims. Current Medicinal Chemistry30 (34), 3832-3845.‏
Al-Kuraishy, H. M., Al-Gareeb, A. I., Al-Maiahy, T. J., Alexiou, A., Mukerjee, N., & Batiha, G. E. S. (2022). Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnology and Genetic Engineering Reviews , 1-21.‏
Aminoshariae, A., & Khan, A. (2015). Acetaminophen: old drug, new issues. Journal of endodontics41 (5), 588-593.‏
Angelis, D., Savani, R. C., Jagarapu, J., Hu, J., Wan-Huen, P., & Chalak, L. (2021). Part I. Mechanisms of actions and metabolism of acetaminophen related to the neonatal brain. Early Human Development159 , 105406.‏
Ayoub, S. S., Botting, R. M., Goorha, S., Colville-Nash, P. R., Willoughby, D. A., & Ballou, L. R. (2004). Acetaminophen-induced hypothermia in mice is mediated by a prostaglandin endoperoxide synthase 1 gene-derived protein. Proceedings of the National Academy of Sciences101 (30), 11165-11169.‏
Ayoub, S. S., & Flower, R. J. (2019). Loss of hypothermic and anti-pyretic action of paracetamol in cyclooxygenase-1 knockout mice is indicative of inhibition of cyclooxygenase-1 variant enzymes. European Journal of Pharmacology861 , 172609.‏
Ayoub, S. S. (2021). Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature8 (4), 351-371.‏
Balhara, A., Kumar, A., Kumar, S., Samiulla, D. S., Giri, S., & Singh, S. (2021). Exploration of inhibition potential of isoniazid and its metabolites towards CYP2E1 in human liver microsomes through LC-MS/MS analysis. Journal of Pharmaceutical and Biomedical Analysis203 , 114223.‏
Bandschapp, O., Filitz, J., Urwyler, A., Koppert, W., & Ruppen, W. (2011). Tropisetron blocks analgesic action of acetaminophen: a human pain model study. Pain152 (6), 1304-1310.‏
Barriere, D. A., Mallet, C., Blomgren, A., Simonsen, C., Daulhac, L., Libert, F., … & Eschalier, A. (2013). Fatty acid amide hydrolase-dependent generation of antinociceptive drug metabolites acting on TRPV1 in the brain. PloS one8 (8), e70690.‏
Benamar, K., Geller, E. B., & Adler, M. W. (2002). Effect of a μ-opioid receptor-selective antagonist on interleukin-6 fever. Life sciences70 (18), 2139-2145.‏
Bhagyashree, A., Manikkoth, S., Sequeira, M., Nayak, R., & Rao, S. N. (2017). Central dopaminergic system plays a role in the analgesic action of paracetamol: Preclinical evidence. Indian journal of pharmacology49 (1), 21.‏
Biswas, D., Somkuwar, B. G., Borah, J. C., Varadwaj, P. K., Gupta, S., Khan, Z. A., … & Deb, L. (2023). Phytochemical mediated modulation of COX-3 and NFκB for the management and treatment of arthritis. Scientific Reports13 (1), 13612.‏
Björkman, R., Hallman, K. M., Hedner, J., Hedner, T., & Henning, M. (1994). Acetaminophen blocks spinal hyperalgesia induced by NMDA and substance P. Pain57 (3), 259-264.‏
Blecharz-Klin, K., Piechal, A., Pyrzanowska, J., Joniec-Maciejak, I., Kiliszek, P., & Widy-Tyszkiewicz, E. (2013). Paracetamol—The outcome on neurotransmission and spatial learning in rats. Behavioural brain research253, 157-164.‏ Boczek, T., & Zylinska, L. (2021). Receptor-dependent and independent regulation of voltage-gated Ca2+ channels and Ca2+-permeable channels by endocannabinoids in the brain. International Journal of Molecular Sciences22(15), 8168.‏ Brookhuis, S. A., Allegaert, K., Hanff, L. M., Lub-de Hooge, M. N., Dallmann, A., & Mian, P. (2021). Modelling tools to characterize acetaminophen pharmacokinetics in the pregnant population. Pharmaceutics13(8), 1302.‏ Caballero, J. (2022). A new era for the design of TRPV1 antagonists and agonists with the use of structural information and molecular docking of capsaicin-like compounds. Journal of Enzyme Inhibition and Medicinal Chemistry37(1), 2169-2178.‏ Cha, M., Sallem, I., Jang, H. W., & Jung, I. Y. (2020). Role of transient receptor potential vanilloid type 1 in the trigeminal ganglion and brain stem following dental pulp inflammation. International Endodontic Journal53(1), 62-71.‏ Chandrasekharan, N. V., Dai, H., Roos, K. L. T., Evanson, N. K., Tomsik, J., Elton, T. S., & Simmons, D. L. (2002). COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: cloning, structure, and expression. Proceedings of the National Academy of Sciences99(21), 13926-13931.‏
Chang, C. H., Chang, Y. S., & Hsieh, Y. L. (2021). Transient receptor potential vanilloid subtype 1 depletion mediates mechanical allodynia through cellular signal alterations in small-fiber neuropathy. Pain Reports6 (1).‏
Choi, S. S., Lee, J. K., & Suh, H. W. (2001). Antinociceptive profiles of aspirin and acetaminophen in formalin, substance P and glutamate pain models. Brain Research921(1-2), 233-239.‏
Chowdhury, A., Nabila, J., Temitope, I. A., & Wang, S. (2020). Current etiological comprehension and therapeutic targets of acetaminophen-induced hepatotoxicity. Pharmacological research161 , 105102.‏
Cooper, D. J., Grigg, M. J., Plewes, K., Rajahram, G. S., Piera, K. A., William, T., … & Barber, B. E. (2022). The effect of regularly dosed acetaminophen vs no acetaminophen on renal function in Plasmodium knowlesi malaria (PACKNOW): a randomized, controlled trial. Clinical Infectious Diseases75(8), 1379-1388.‏ Costa, B., Siniscalco, D., Trovato, A. E., Comelli, F., Sotgiu, M. L., Colleoni, M., … & Giagnoni, G. (2006). AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. British journal of pharmacology148(7), 1022-1032.‏ Davies, N. M., Good, R. L., Roupe, K. A., & Yáñez, J. A. (2004). Cyclooxygenase-3: axiom, dogma, anomaly, enigma or splice error? Not as easy as 1, 2, 3. J Pharm Pharm Sci7(2), 217-226.‏ Dogrul, A., Seyrek, M., Akgul, E. O., Cayci, T., Kahraman, S., & Bolay, H. (2012). Systemic paracetamol-induced analgesic and antihyperalgesic effects through activation of descending serotonergic pathways involving spinal 5-HT7 receptors. European Journal of Pharmacology677(1-3), 93-101.‏ Eberhardt, M. J., Schillers, F., Eberhardt, E. M., Risser, L., de la Roche, J., Herzog, C., … & Leffler, A. (2017). Reactive metabolites of acetaminophen activate and sensitize the capsaicin receptor TRPV1. Scientific reports7(1), 12775.‏ Elmer, J. (2021). Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects, and Neuropathic Pain.‏ Esh, C. J., Chrismas, B. C., Mauger, A. R., & Taylor, L. (2021). Pharmacological hypotheses: Is acetaminophen selective in its cyclooxygenase inhibition?. Pharmacology Research & Perspectives9(4), e00835.‏ Ferrer, M. D., Busquets-Cortés, C., Capó, X., Tejada, S., Tur, J. A., Pons, A., & Sureda, A. (2019). Cyclooxygenase-2 inhibitors as a therapeutic target in inflammatory diseases. Current medicinal chemistry26(18), 3225-3241.‏ Freo, U., Ruocco, C., Valerio, A., Scagnol, I., & Nisoli, E. (2021). Paracetamol: A review of guideline recommendations. Journal of clinical medicine10(15), 3420.‏ Fukushima, A., Sekiguchi, W., Mamada, K., Tohma, Y., & Ono, H. (2017). Serotonergic system does not contribute to the hypothermic action of acetaminophen. Biological and Pharmaceutical Bulletin40(2), 227-233.‏ G Perrone, M., Scilimati, A., Simone, L., & Vitale, P. (2010). Selective COX-1 inhibition: A therapeutic target to be reconsidered. Current medicinal chemistry17(32), 3769-3805.‏ Garami, A., Shimansky, Y. P., Rumbus, Z., Vizin, R. C., Farkas, N., Hegyi, J., … & Romanovsky, A. A. (2020). Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: Insights from mathematical modeling and meta-analysis. Pharmacology & therapeutics208, 107474.‏ Gentry, C., Andersson, D. A., & Bevan, S. (2015). TRPA1 mediates the hypothermic action of acetaminophen. Scientific reports5(1), 12771.‏ Godfrey, L., Bailey, I., Toms, N. J., Clarke, G. D., Kitchen, I., & Hourani, S. M. (2007). Paracetamol inhibits nitric oxide synthesis in murine spinal cord slices. European journal of pharmacology, 562(1-2), 68-71.‏ Graham, G. G., Davies, M. J., Day, R. O., Mohamudally, A., & Scott, K. F. (2013). The modern pharmacology of paracetamol: therapeutic actions, mechanism of action, metabolism, toxicity and recent pharmacological findings. Inflammopharmacology21, 201-232.‏
Hamurtekin, Y., Nouilati, A., Demirbatir, C., & Hamurtekin, E. (2020). The contribution of serotonergic receptors and nitric oxide systems in the analgesic effect of acetaminophen: an overview of the last decade. Turkish Journal of Pharmaceutical Sciences17 (1), 119.‏
Holme, J. A., Dahlin, D. C., Nelson, S. D., & Dybing, E. (1984). Cytotoxic effects of N-acetyl-p-benzoquinone imine, a common arylating intermediate of paracetamol and N-hydroxyparacetamol. Biochemical pharmacology33 (3), 401-406.‏
Iftinca, M., Defaye, M., & Altier, C. (2021). TRPV1-targeted drugs in development for human pain conditions. Drugs81 (1), 7-27.‏
Irinmwinuwa, E. O., Unekwe, P. C., Egba, E. U., Metu, E. C., & Cherech, N. C. (2022). Acetaminophen: Ancient drug with a novel analgesic mechanism of action. World Journal of Advanced Research and Reviews16 (1), 580-589.‏
Jaeschke, H., Akakpo, J. Y., Umbaugh, D. S., & Ramachandran, A. (2020). Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicological Sciences174 (2), 159-167.‏
Kanchanasurakit, S., Arsu, A., Siriplabpla, W., Duangjai, A., & Saokaew, S. (2020). Acetaminophen use and risk of renal impairment: A systematic review and meta-analysis. Kidney research and clinical practice39(1), 81.‏ Karandikar, Y. S., Belsare, P., & Panditrao, A. (2016). Effect of drugs modulating serotonergic system on the analgesic action of paracetamol in mice. Indian journal of pharmacology48(3), 281.‏ Kaur, M. (2020). Mechanism of Action, Kinetics and a Bioactive Metabolites AM404 of Paracetamol. J Clin Med Res1(2), 1-9.‏ Kilaru, A., & Chapman, K. D. (2020). The endocannabinoid system. Essays in Biochemistry64(3), 485-499.‏ Kose, D., Cadirci, E., Halici, Z., Sirin, B., & Dincer, B. (2019). The investigation of possible roles of central 5-HT 7 receptors in antipyretic effect mechanism of paracetamol in LPS-induced hyperthermia model of mice. Inflammopharmacology27, 1169-1178.‏ Kotowska-Rodziewicz, A., Zalewska, A., & Maciejczyk, M. (2023). A Review of Preclinical and Clinical Studies in Support of the Role of Non-Steroidal Anti-Inflammatory Drugs in Dentistry. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research29, e940635-1.‏ Krenzelok, E. P. (2009). The FDA Acetaminophen Advisory Committee Meeting–what is the future of acetaminophen in the United States? The perspective of a committee member. Clinical Toxicology47(8), 784-789.‏ Ledebuhr, K. N. B., Nunes, G. D. A., Besckow, E. M., Giehl, M. R., Godoi, B., Bortolatto, C. F., & Brüning, C. A. (2022). Antinociceptive effect of N-(3-(phenylselanyl) prop-2-yn-1-yl) benzamide in mice: Involvement of 5-HT1A and 5-HT2A/2C receptors. Chemico-Biological Interactions359, 109918.‏ Li, S., Dou, W., Tang, Y., Goorha, S., Ballou, L. R., & Blatteis, C. M. (2008). Acetaminophen: antipyretic or hypothermic in mice? In either case, PGHS-1b (COX-3) is irrelevant. Prostaglandins & other lipid mediators85(3-4), 89-99.‏ Liao, Z., Umar, M., Huang, X., Qin, L., Xiao, G., Chen, Y., … & Chen, D. (2023). Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Proliferation, e13569.‏ Libert, F., Bonnefont, J., Bourinet, E., Doucet, E., Alloui, A., Hamon, M., … & Eschalier, A. (2004). Acetaminophen: a central analgesic drug that involves a spinal tropisetron-sensitive, non–5-HT3 receptor-mediated effect. Molecular pharmacology66(3), 728-734.‏ Liu, J., Reid, A. R., & Sawynok, J. (2013). Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors. Neuroscience letters536, 64-68.‏ Lundberg, J. O., & Weitzberg, E. (2022). Nitric oxide signaling in health and disease. Cell185(16), 2853-2878.‏ Mageed, S. S. A., Ammar, R. M., Nassar, N. N., Moawad, H., & Kamel, A. S. (2022). Role of PI3K/Akt axis in mitigating hippocampal ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol and FAAH inhibitor in rat. Neuropharmacology207, 108935.‏ Mahesh, G., Anil Kumar, K., & Reddanna, P. (2021). Overview on the discovery and development of anti-inflammatory drugs: should the focus be on synthesis or degradation of PGE2?. Journal of Inflammation Research, 253-263.‏ Mallet, C., Barrière, D. A., Ermund, A., Jönsson, B. A., Eschalier, A., Zygmunt, P. M., & Högestätt, E. D. (2010). TRPV1 in brain is involved in acetaminophen-induced antinociception. PloS one5(9), e12748.‏ Mallet, C., Desmeules, J., Pegahi, R., & Eschalier, A. (2023). An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. Journal of Pain Research, 1081-1094.‏
Mallett, C., Daulhac, L., Bonnefont, J., Ledent, C., Eitenne, M., Chapuy, E., & Eschalier, A. (2008). Endocannabinoid and serotonergic systems are needed for acetaminophen-induce analgesia. Pain139 , 190-200.‏
Martinez Ramirez, C. E., Ruiz‐Pérez, G., Stollenwerk, T. M., Behlke, C., Doherty, A., & Hillard, C. J. (2023). Endocannabinoid signaling in the central nervous system. Glia71 (1), 5-35.‏
Messlinger, K., Balcziak, L. K., & Russo, A. F. (2020). Cross-talk signaling in the trigeminal ganglion: role of neuropeptides and other mediators. Journal of neural transmission127 , 431-444.‏
Meza, R. C., Ancatén-González, C., Chiu, C. Q., & Chávez, A. E. (2022). Transient receptor potential vanilloid 1 function at central synapses in health and disease. Frontiers in Cellular Neuroscience16 , 864828.‏
Nakagawa, F., Higashi, S., Ando, E., Ohsumi, T., Watanabe, S., & Takeuchi, H. (2020). Modification of TRPV4 activity by acetaminophen. Heliyon6(1).‏ Nazıroğlu, M., Taner, A. N., Balbay, E., & Çiğ, B. (2019). Inhibitions of anandamide transport and FAAH synthesis decrease apoptosis and oxidative stress through inhibition of TRPV1 channel in an in vitro seizure model. Molecular and cellular biochemistry453, 143-155.‏ Negri, S., Faris, P., Maniezzi, C., Pellavio, G., Spaiardi, P., Botta, L., … & Moccia, F. (2021). NMDA receptors elicit flux-independent intracellular Ca2+ signals via metabotropic glutamate receptors and flux-dependent nitric oxide release in human brain microvascular endothelial cells. Cell Calcium99, 102454.‏ Nilsson, J. L., Mallet, C., Shionoya, K., Blomgren, A., Sundin, A. P., Grundemar, L., … & Zygmunt, P. M. (2021). Paracetamol analogues conjugated by FAAH induce TRPV1-mediated antinociception without causing acute liver toxicity. European Journal of Medicinal Chemistry213, 113042.‏ Ogemdi, I. K. (2019). A Review on the Properties and Uses of Paracetamol. Int. J. Pharm. Chem5(31.10), 11648.‏ Ohashi, N., & Kohno, T. (2020). Analgesic effect of acetaminophen: a review of known and novel mechanisms of action. Frontiers in Pharmacology11, 1916.‏ Oz, M., Jaligam, V., Galadari, S., Petroianu, G., Shuba, Y. M., & Shippenberg, T. S. (2010). The endogenous cannabinoid, anandamide, inhibits dopamine transporter function by a receptor‐independent mechanism. Journal of neurochemistry112(6), 1454-1464.‏ Pickering, G., Loriot, M. A., Libert, F., Eschalier, A., Beaune, P., & Dubray, C. (2006). Analgesic effect of acetaminophen in humans: first evidence of a central serotonergic mechanism. Clinical Pharmacology & Therapeutics79(4), 371-378.‏ Pickering, G., Moustafa, F., Desbrandes, S., Michel Cardot, J., Roux, D., & Dubray, C. (2013). Paracetamol and opioid pathways: a pilot randomized clinical trial. Fundamental & clinical pharmacology27(3), 339-345.‏ Qu, Y. J., Zhang, X., Fan, Z. Z., Huai, J., Teng, Y. B., Zhang, Y., & Yue, S. W. (2016). Effect of TRPV4-p38 MAPK pathway on neuropathic pain in rats with chronic compression of the dorsal root ganglion. BioMed Research International2016.‏ Raffa, R. B., Walker, E. A., & Sterious, S. N. (2004). Opioid receptors and acetaminophen (paracetamol). European journal of pharmacology503(1-3), 209-210.‏ Refat, M. S., Mohamed, G. G., El-Sayed, M. Y., Killa, H. M., & Fetooh, H. (2017). Spectroscopic and thermal degradation behavior of Mg (II), Ca (II), Ba (II) and Sr (II) complexes with paracetamol drug. Arabian Journal of Chemistry10, S2376-S2387.‏ Ruggieri, V., Vitale, G., Pini, L. A., & Sandrini, M. (2008). Differential involvement of opioidergic and serotonergic systems in the antinociceptive activity of N-arachidonoyl-phenolamine (AM404) in the rat: comparison with paracetamol. Naunyn-Schmiedeberg’s archives of pharmacology377, 219-229.‏ Saliba, S. W., Bonifacino, T., Serchov, T., Bonanno, G., de Oliveira, A. C. P., & Fiebich, B. L. (2019). Neuroprotective effect of AM404 against NMDA-induced hippocampal excitotoxicity. Frontiers in Cellular Neuroscience13, 566.‏ Sandrini, M., Pini, L. A., & Vitale, G. (2003). Differential involvement of central 5-HT 1B and 5-HT 3 receptor subtypes in the antinociceptive effect of paracetamol. Inflammation Research52, 347-352.‏ Schultz, S., DeSilva, M., Gu, T. T., Qiang, M., & Whang, K. (2012). Effects of the Analgesic Acetaminophen (Paracetamol) and its para‐Aminophenol Metabolite on Viability of Mouse‐Cultured Cortical Neurons. Basic & clinical pharmacology & toxicology110(2), 141-144.‏ Schultz, S., Gould, G. G., Antonucci, N., Brigida, A. L., & Siniscalco, D. (2021). Endocannabinoid system dysregulation from acetaminophen use may lead to autism spectrum disorder: could cannabinoid treatment be efficacious?. Molecules26(7), 1845.‏ Scienza-Martin, K., Lotz, F. N., Zanona, Q. K., Santana-Kragelund, F., Crestani, A. P., Boos, F. Z., … & Quillfeldt, J. A. (2022). Memory Consolidation Depends on Endogenous Hippocampal Levels of Anandamide: CB1 and M4, but Possibly not TRPV1 Receptors Mediate AM404 effects. Neuroscience497, 53-72.‏ Seth, B. (2022). Non-opioid medication in pain medicine. Anaesthesia & Intensive Care Medicine23(7), 391-394.‏ Shaheen, S. O., Lundholm, C., Brew, B. K., & Almqvist, C. (2019). Prescribed analgesics in pregnancy and risk of childhood asthma. European Respiratory Journal53(5) Sherbash, M., Furuya-Kanamori, L., Nader, J. D., & Thalib, L. (2020). Risk of wheezing and asthma exacerbation in children treated with paracetamol versus ibuprofen: a systematic review and meta-analysis of randomised controlled trials. BMC Pulmonary Medicine20(1), 1-6.‏ Snipes, J. A., Kis, B., Shelness, G. S., Hewett, J. A., & Busija, D. W. (2005). Cloning and characterization of cyclooxygenase-1b (putative cyclooxygenase-3) in rat. Journal of Pharmacology and Experimental Therapeutics313(2), 668-676.‏ Southren, D. L., Nardone, A. D., Haastrup, A. A., Roberts, R. J., Chang, M. G., & Bittner, E. A. (2021). An examination of gastrointestinal absorption using the acetaminophen absorption test in critically ill patients with COVID‐19: a retrospective cohort study. Nutrition in Clinical Practice36(4), 853-862.‏
Souza, V. D., Shetty, M., Badanthadka, M., Mamatha, B. S., & Vijayanarayana, K. (2022). The effect of nutritional status on the pharmacokinetic profile of acetaminophen. Toxicology and Applied Pharmacology438 , 115888.‏
Spyker, D. A., Dart, R. C., Yip, L., Reynolds, K., Brittain, S., & Yarema, M. (2022). Population pharmacokinetic analysis of acetaminophen overdose with immediate release, extended release and modified release formulations. Clinical Toxicology60(10), 1113-1121.‏
Stueber, T., Meyer, S., Jangra, A., Hage, A., Eberhardt, M., & Leffler, A. (2018). Activation of the capsaicin-receptor TRPV1 by the acetaminophen metabolite N-arachidonoylaminophenol results in cytotoxicity. Life sciences194 , 67-74.‏
Topuz, R. D., Gündüz, Ö., Karadağ, Ç. H., & Ulugöl, A. (2020). Non-opioid analgesics and the endocannabinoid system. Balkan medical journal37 (6), 309.‏
Vigo, M. B., Pérez, M. J., De Fino, F., Gómez, G., Martínez, S. A., Bisagno, V., … & Ghanem, C. I. (2019). Acute acetaminophen intoxication induces direct neurotoxicity in rats manifested as astrogliosis and decreased dopaminergic markers in brain areas associated with locomotor regulation. Biochemical Pharmacology170 , 113662.‏
Zacharia, G. S., & Jacob, A. (2023). Acetaminophen: A Liver Killer or Thriller. Cureus15 (10).‏
Zaitone, S. A., El-Wakeil, A. F., & Abou-El-Ela, S. H. (2012). Inhibition of fatty acid amide hydrolase by URB597 attenuates the anxiolytic-like effect of acetaminophen in the mouse elevated plus-maze test. Behavioural pharmacology23 (4), 417-425.‏