References
Abdel-Salam, O. M., & Mózsik, G. (2023). Capsaicin, the vanilloid
receptor TRPV1 agonist in neuroprotection: mechanisms involved and
significance. Neurochemical Research , 48 (11), 3296-3315.
Al-Kuraishy, H. M., Al-Gareeb, A. I., Alexiou, A., & Batiha, G. E. S.
(2023). Cannabinoids receptors in COVID-19: perpetrators and
victims. Current Medicinal Chemistry , 30 (34), 3832-3845.
Al-Kuraishy, H. M., Al-Gareeb, A. I., Al-Maiahy, T. J., Alexiou, A.,
Mukerjee, N., & Batiha, G. E. S. (2022). Prostaglandins and
non-steroidal anti-inflammatory drugs in Covid-19. Biotechnology
and Genetic Engineering Reviews , 1-21.
Aminoshariae, A., & Khan, A. (2015). Acetaminophen: old drug, new
issues. Journal of endodontics , 41 (5), 588-593.
Angelis, D., Savani, R. C., Jagarapu, J., Hu, J., Wan-Huen, P., &
Chalak, L. (2021). Part I. Mechanisms of actions and metabolism of
acetaminophen related to the neonatal brain. Early Human
Development , 159 , 105406.
Ayoub, S. S., Botting, R. M., Goorha, S., Colville-Nash, P. R.,
Willoughby, D. A., & Ballou, L. R. (2004). Acetaminophen-induced
hypothermia in mice is mediated by a prostaglandin endoperoxide synthase
1 gene-derived protein. Proceedings of the National Academy of
Sciences , 101 (30), 11165-11169.
Ayoub, S. S., & Flower, R. J. (2019). Loss of hypothermic and
anti-pyretic action of paracetamol in cyclooxygenase-1 knockout mice is
indicative of inhibition of cyclooxygenase-1 variant
enzymes. European Journal of Pharmacology , 861 , 172609.
Ayoub, S. S. (2021). Paracetamol (acetaminophen): A familiar drug with
an unexplained mechanism of action. Temperature , 8 (4),
351-371.
Balhara, A., Kumar, A., Kumar, S., Samiulla, D. S., Giri, S., & Singh,
S. (2021). Exploration of inhibition potential of isoniazid and its
metabolites towards CYP2E1 in human liver microsomes through LC-MS/MS
analysis. Journal of Pharmaceutical and Biomedical
Analysis , 203 , 114223.
Bandschapp, O., Filitz, J., Urwyler, A., Koppert, W., & Ruppen, W.
(2011). Tropisetron blocks analgesic action of acetaminophen: a human
pain model study. Pain , 152 (6), 1304-1310.
Barriere, D. A., Mallet, C., Blomgren, A., Simonsen, C., Daulhac, L.,
Libert, F., … & Eschalier, A. (2013). Fatty acid amide
hydrolase-dependent generation of antinociceptive drug metabolites
acting on TRPV1 in the brain. PloS one , 8 (8), e70690.
Benamar, K., Geller, E. B., & Adler, M. W. (2002). Effect of a μ-opioid
receptor-selective antagonist on interleukin-6 fever. Life
sciences , 70 (18), 2139-2145.
Bhagyashree, A., Manikkoth, S., Sequeira, M., Nayak, R., & Rao, S. N.
(2017). Central dopaminergic system plays a role in the analgesic action
of paracetamol: Preclinical evidence. Indian journal of
pharmacology , 49 (1), 21.
Biswas, D., Somkuwar, B. G., Borah, J. C., Varadwaj, P. K., Gupta, S.,
Khan, Z. A., … & Deb, L. (2023). Phytochemical mediated modulation of
COX-3 and NFκB for the management and treatment of
arthritis. Scientific Reports , 13 (1), 13612.
Björkman, R., Hallman, K. M., Hedner, J., Hedner, T., & Henning, M.
(1994). Acetaminophen blocks spinal hyperalgesia induced by NMDA and
substance P. Pain , 57 (3), 259-264.
Blecharz-Klin, K., Piechal, A., Pyrzanowska, J., Joniec-Maciejak, I.,
Kiliszek, P., & Widy-Tyszkiewicz, E. (2013). Paracetamol—The outcome
on neurotransmission and spatial learning in rats. Behavioural
brain research, 253, 157-164.
Boczek, T., & Zylinska, L. (2021). Receptor-dependent and independent
regulation of voltage-gated Ca2+ channels and Ca2+-permeable channels by
endocannabinoids in the brain. International Journal of Molecular
Sciences, 22(15), 8168.
Brookhuis, S. A., Allegaert, K., Hanff, L. M., Lub-de Hooge, M. N.,
Dallmann, A., & Mian, P. (2021). Modelling tools to characterize
acetaminophen pharmacokinetics in the pregnant
population. Pharmaceutics, 13(8), 1302.
Caballero, J. (2022). A new era for the design of TRPV1 antagonists and
agonists with the use of structural information and molecular docking of
capsaicin-like compounds. Journal of Enzyme Inhibition and
Medicinal Chemistry, 37(1), 2169-2178.
Cha, M., Sallem, I., Jang, H. W., & Jung, I. Y. (2020). Role of
transient receptor potential vanilloid type 1 in the trigeminal ganglion
and brain stem following dental pulp inflammation. International
Endodontic Journal, 53(1), 62-71.
Chandrasekharan, N. V., Dai, H., Roos, K. L. T., Evanson, N. K., Tomsik,
J., Elton, T. S., & Simmons, D. L. (2002). COX-3, a cyclooxygenase-1
variant inhibited by acetaminophen and other analgesic/antipyretic
drugs: cloning, structure, and expression. Proceedings of the
National Academy of Sciences, 99(21), 13926-13931.
Chang, C. H., Chang, Y. S., & Hsieh, Y. L. (2021). Transient receptor
potential vanilloid subtype 1 depletion mediates mechanical allodynia
through cellular signal alterations in small-fiber
neuropathy. Pain Reports , 6 (1).
Choi, S. S., Lee, J. K., & Suh, H. W. (2001). Antinociceptive profiles
of aspirin and acetaminophen in formalin, substance P and glutamate pain
models. Brain Research, 921(1-2), 233-239.
Chowdhury, A., Nabila, J., Temitope, I. A., & Wang, S. (2020). Current
etiological comprehension and therapeutic targets of
acetaminophen-induced hepatotoxicity. Pharmacological
research , 161 , 105102.
Cooper, D. J., Grigg, M. J., Plewes, K., Rajahram, G. S., Piera, K. A.,
William, T., … & Barber, B. E. (2022). The effect of regularly dosed
acetaminophen vs no acetaminophen on renal function in Plasmodium
knowlesi malaria (PACKNOW): a randomized, controlled
trial. Clinical Infectious Diseases, 75(8), 1379-1388.
Costa, B., Siniscalco, D., Trovato, A. E., Comelli, F., Sotgiu, M. L.,
Colleoni, M., … & Giagnoni, G. (2006). AM404, an inhibitor of
anandamide uptake, prevents pain behaviour and modulates cytokine and
apoptotic pathways in a rat model of neuropathic pain. British
journal of pharmacology, 148(7), 1022-1032.
Davies, N. M., Good, R. L., Roupe, K. A., & Yáñez, J. A. (2004).
Cyclooxygenase-3: axiom, dogma, anomaly, enigma or splice error? Not as
easy as 1, 2, 3. J Pharm Pharm Sci, 7(2), 217-226.
Dogrul, A., Seyrek, M., Akgul, E. O., Cayci, T., Kahraman, S., & Bolay,
H. (2012). Systemic paracetamol-induced analgesic and antihyperalgesic
effects through activation of descending serotonergic pathways involving
spinal 5-HT7 receptors. European Journal of
Pharmacology, 677(1-3), 93-101.
Eberhardt, M. J., Schillers, F., Eberhardt, E. M., Risser, L., de la
Roche, J., Herzog, C., … & Leffler, A. (2017). Reactive metabolites
of acetaminophen activate and sensitize the capsaicin receptor
TRPV1. Scientific reports, 7(1), 12775.
Elmer, J. (2021). Investigating Cannabinoid Type-1 Receptor (CB1R)
Positive Allosteric Modulators (PAMs) in Mouse Models of Overt
Cannabimimetic Activity, Subjective Drug Effects, and Neuropathic Pain.
Esh, C. J., Chrismas, B. C., Mauger, A. R., & Taylor, L. (2021).
Pharmacological hypotheses: Is acetaminophen selective in its
cyclooxygenase inhibition?. Pharmacology Research &
Perspectives, 9(4), e00835.
Ferrer, M. D., Busquets-Cortés, C., Capó, X., Tejada, S., Tur, J. A.,
Pons, A., & Sureda, A. (2019). Cyclooxygenase-2 inhibitors as a
therapeutic target in inflammatory diseases. Current medicinal
chemistry, 26(18), 3225-3241.
Freo, U., Ruocco, C., Valerio, A., Scagnol, I., & Nisoli, E. (2021).
Paracetamol: A review of guideline recommendations. Journal of
clinical medicine, 10(15), 3420.
Fukushima, A., Sekiguchi, W., Mamada, K., Tohma, Y., & Ono, H. (2017).
Serotonergic system does not contribute to the hypothermic action of
acetaminophen. Biological and Pharmaceutical
Bulletin, 40(2), 227-233.
G Perrone, M., Scilimati, A., Simone, L., & Vitale, P. (2010).
Selective COX-1 inhibition: A therapeutic target to be
reconsidered. Current medicinal chemistry, 17(32),
3769-3805.
Garami, A., Shimansky, Y. P., Rumbus, Z., Vizin, R. C., Farkas, N.,
Hegyi, J., … & Romanovsky, A. A. (2020). Hyperthermia induced by
transient receptor potential vanilloid-1 (TRPV1) antagonists in human
clinical trials: Insights from mathematical modeling and
meta-analysis. Pharmacology & therapeutics, 208, 107474.
Gentry, C., Andersson, D. A., & Bevan, S. (2015). TRPA1 mediates the
hypothermic action of acetaminophen. Scientific
reports, 5(1), 12771.
Godfrey, L., Bailey, I., Toms, N. J., Clarke, G. D., Kitchen, I., &
Hourani, S. M. (2007). Paracetamol inhibits nitric oxide synthesis in
murine spinal cord slices. European journal of pharmacology, 562(1-2),
68-71.
Graham, G. G., Davies, M. J., Day, R. O., Mohamudally, A., & Scott, K.
F. (2013). The modern pharmacology of paracetamol: therapeutic actions,
mechanism of action, metabolism, toxicity and recent pharmacological
findings. Inflammopharmacology, 21, 201-232.
Hamurtekin, Y., Nouilati, A., Demirbatir, C., & Hamurtekin, E. (2020).
The contribution of serotonergic receptors and nitric oxide systems in
the analgesic effect of acetaminophen: an overview of the last
decade. Turkish Journal of Pharmaceutical Sciences , 17 (1),
119.
Holme, J. A., Dahlin, D. C., Nelson, S. D., & Dybing, E. (1984).
Cytotoxic effects of N-acetyl-p-benzoquinone imine, a common arylating
intermediate of paracetamol and N-hydroxyparacetamol. Biochemical
pharmacology , 33 (3), 401-406.
Iftinca, M., Defaye, M., & Altier, C. (2021). TRPV1-targeted drugs in
development for human pain conditions. Drugs , 81 (1),
7-27.
Irinmwinuwa, E. O., Unekwe, P. C., Egba, E. U., Metu, E. C., & Cherech,
N. C. (2022). Acetaminophen: Ancient drug with a novel analgesic
mechanism of action. World Journal of Advanced Research and
Reviews , 16 (1), 580-589.
Jaeschke, H., Akakpo, J. Y., Umbaugh, D. S., & Ramachandran, A. (2020).
Novel therapeutic approaches against acetaminophen-induced liver injury
and acute liver failure. Toxicological Sciences , 174 (2),
159-167.
Kanchanasurakit, S., Arsu, A., Siriplabpla, W., Duangjai, A., &
Saokaew, S. (2020). Acetaminophen use and risk of renal impairment: A
systematic review and meta-analysis. Kidney research and clinical
practice, 39(1), 81.
Karandikar, Y. S., Belsare, P., & Panditrao, A. (2016). Effect of drugs
modulating serotonergic system on the analgesic action of paracetamol in
mice. Indian journal of pharmacology, 48(3), 281.
Kaur, M. (2020). Mechanism of Action, Kinetics and a Bioactive
Metabolites AM404 of Paracetamol. J Clin Med Res, 1(2),
1-9.
Kilaru, A., & Chapman, K. D. (2020). The endocannabinoid
system. Essays in Biochemistry, 64(3), 485-499.
Kose, D., Cadirci, E., Halici, Z., Sirin, B., & Dincer, B. (2019). The
investigation of possible roles of central 5-HT 7 receptors in
antipyretic effect mechanism of paracetamol in LPS-induced hyperthermia
model of mice. Inflammopharmacology, 27, 1169-1178.
Kotowska-Rodziewicz, A., Zalewska, A., & Maciejczyk, M. (2023). A
Review of Preclinical and Clinical Studies in Support of the Role of
Non-Steroidal Anti-Inflammatory Drugs in Dentistry. Medical
Science Monitor: International Medical Journal of Experimental and
Clinical Research, 29, e940635-1.
Krenzelok, E. P. (2009). The FDA Acetaminophen Advisory Committee
Meeting–what is the future of acetaminophen in the United States? The
perspective of a committee member. Clinical
Toxicology, 47(8), 784-789.
Ledebuhr, K. N. B., Nunes, G. D. A., Besckow, E. M., Giehl, M. R.,
Godoi, B., Bortolatto, C. F., & Brüning, C. A. (2022). Antinociceptive
effect of N-(3-(phenylselanyl) prop-2-yn-1-yl) benzamide in mice:
Involvement of 5-HT1A and 5-HT2A/2C receptors. Chemico-Biological
Interactions, 359, 109918.
Li, S., Dou, W., Tang, Y., Goorha, S., Ballou, L. R., & Blatteis, C. M.
(2008). Acetaminophen: antipyretic or hypothermic in mice? In either
case, PGHS-1b (COX-3) is irrelevant. Prostaglandins & other lipid
mediators, 85(3-4), 89-99.
Liao, Z., Umar, M., Huang, X., Qin, L., Xiao, G., Chen, Y., … & Chen,
D. (2023). Transient receptor potential vanilloid 1: A potential
therapeutic target for the treatment of osteoarthritis and rheumatoid
arthritis. Cell Proliferation, e13569.
Libert, F., Bonnefont, J., Bourinet, E., Doucet, E., Alloui, A., Hamon,
M., … & Eschalier, A. (2004). Acetaminophen: a central analgesic drug
that involves a spinal tropisetron-sensitive, non–5-HT3
receptor-mediated effect. Molecular pharmacology, 66(3),
728-734.
Liu, J., Reid, A. R., & Sawynok, J. (2013). Antinociception by
systemically-administered acetaminophen (paracetamol) involves spinal
serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral
adenosine A1 receptors. Neuroscience letters, 536, 64-68.
Lundberg, J. O., & Weitzberg, E. (2022). Nitric oxide signaling in
health and disease. Cell, 185(16), 2853-2878.
Mageed, S. S. A., Ammar, R. M., Nassar, N. N., Moawad, H., & Kamel, A.
S. (2022). Role of PI3K/Akt axis in mitigating hippocampal
ischemia-reperfusion injury via CB1 receptor stimulation by paracetamol
and FAAH inhibitor in rat. Neuropharmacology, 207,
108935.
Mahesh, G., Anil Kumar, K., & Reddanna, P. (2021). Overview on the
discovery and development of anti-inflammatory drugs: should the focus
be on synthesis or degradation of PGE2?. Journal of Inflammation
Research, 253-263.
Mallet, C., Barrière, D. A., Ermund, A., Jönsson, B. A., Eschalier, A.,
Zygmunt, P. M., & Högestätt, E. D. (2010). TRPV1 in brain is involved
in acetaminophen-induced antinociception. PloS one, 5(9),
e12748.
Mallet, C., Desmeules, J., Pegahi, R., & Eschalier, A. (2023). An
Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of
Action of Paracetamol (Acetaminophen): Experimental Evidence and
Potential Clinical Impact. Journal of Pain Research, 1081-1094.
Mallett, C., Daulhac, L., Bonnefont, J., Ledent, C., Eitenne, M.,
Chapuy, E., & Eschalier, A. (2008). Endocannabinoid and serotonergic
systems are needed for acetaminophen-induce
analgesia. Pain , 139 , 190-200.
Martinez Ramirez, C. E., Ruiz‐Pérez, G., Stollenwerk, T. M., Behlke, C.,
Doherty, A., & Hillard, C. J. (2023). Endocannabinoid signaling in the
central nervous system. Glia , 71 (1), 5-35.
Messlinger, K., Balcziak, L. K., & Russo, A. F. (2020). Cross-talk
signaling in the trigeminal ganglion: role of neuropeptides and other
mediators. Journal of neural transmission , 127 , 431-444.
Meza, R. C., Ancatén-González, C., Chiu, C. Q., & Chávez, A. E. (2022).
Transient receptor potential vanilloid 1 function at central synapses in
health and disease. Frontiers in Cellular
Neuroscience , 16 , 864828.
Nakagawa, F., Higashi, S., Ando, E., Ohsumi, T., Watanabe, S., &
Takeuchi, H. (2020). Modification of TRPV4 activity by
acetaminophen. Heliyon, 6(1).
Nazıroğlu, M., Taner, A. N., Balbay, E., & Çiğ, B. (2019). Inhibitions
of anandamide transport and FAAH synthesis decrease apoptosis and
oxidative stress through inhibition of TRPV1 channel in an in vitro
seizure model. Molecular and cellular biochemistry, 453,
143-155.
Negri, S., Faris, P., Maniezzi, C., Pellavio, G., Spaiardi, P., Botta,
L., … & Moccia, F. (2021). NMDA receptors elicit flux-independent
intracellular Ca2+ signals via metabotropic glutamate receptors and
flux-dependent nitric oxide release in human brain microvascular
endothelial cells. Cell Calcium, 99, 102454.
Nilsson, J. L., Mallet, C., Shionoya, K., Blomgren, A., Sundin, A. P.,
Grundemar, L., … & Zygmunt, P. M. (2021). Paracetamol analogues
conjugated by FAAH induce TRPV1-mediated antinociception without causing
acute liver toxicity. European Journal of Medicinal
Chemistry, 213, 113042.
Ogemdi, I. K. (2019). A Review on the Properties and Uses of
Paracetamol. Int. J. Pharm. Chem, 5(31.10), 11648.
Ohashi, N., & Kohno, T. (2020). Analgesic effect of acetaminophen: a
review of known and novel mechanisms of action. Frontiers in
Pharmacology, 11, 1916.
Oz, M., Jaligam, V., Galadari, S., Petroianu, G., Shuba, Y. M., &
Shippenberg, T. S. (2010). The endogenous cannabinoid, anandamide,
inhibits dopamine transporter function by a receptor‐independent
mechanism. Journal of neurochemistry, 112(6), 1454-1464.
Pickering, G., Loriot, M. A., Libert, F., Eschalier, A., Beaune, P., &
Dubray, C. (2006). Analgesic effect of acetaminophen in humans: first
evidence of a central serotonergic mechanism. Clinical
Pharmacology & Therapeutics, 79(4), 371-378.
Pickering, G., Moustafa, F., Desbrandes, S., Michel Cardot, J., Roux,
D., & Dubray, C. (2013). Paracetamol and opioid pathways: a pilot
randomized clinical trial. Fundamental & clinical
pharmacology, 27(3), 339-345.
Qu, Y. J., Zhang, X., Fan, Z. Z., Huai, J., Teng, Y. B., Zhang, Y., &
Yue, S. W. (2016). Effect of TRPV4-p38 MAPK pathway on neuropathic pain
in rats with chronic compression of the dorsal root
ganglion. BioMed Research International, 2016.
Raffa, R. B., Walker, E. A., & Sterious, S. N. (2004). Opioid receptors
and acetaminophen (paracetamol). European journal of
pharmacology, 503(1-3), 209-210.
Refat, M. S., Mohamed, G. G., El-Sayed, M. Y., Killa, H. M., & Fetooh,
H. (2017). Spectroscopic and thermal degradation behavior of Mg (II), Ca
(II), Ba (II) and Sr (II) complexes with paracetamol drug. Arabian
Journal of Chemistry, 10, S2376-S2387.
Ruggieri, V., Vitale, G., Pini, L. A., & Sandrini, M. (2008).
Differential involvement of opioidergic and serotonergic systems in the
antinociceptive activity of N-arachidonoyl-phenolamine (AM404) in the
rat: comparison with paracetamol. Naunyn-Schmiedeberg’s archives
of pharmacology, 377, 219-229.
Saliba, S. W., Bonifacino, T., Serchov, T., Bonanno, G., de Oliveira, A.
C. P., & Fiebich, B. L. (2019). Neuroprotective effect of AM404 against
NMDA-induced hippocampal excitotoxicity. Frontiers in Cellular
Neuroscience, 13, 566.
Sandrini, M., Pini, L. A., & Vitale, G. (2003). Differential
involvement of central 5-HT 1B and 5-HT 3 receptor subtypes in the
antinociceptive effect of paracetamol. Inflammation
Research, 52, 347-352.
Schultz, S., DeSilva, M., Gu, T. T., Qiang, M., & Whang, K. (2012).
Effects of the Analgesic Acetaminophen (Paracetamol) and its
para‐Aminophenol Metabolite on Viability of Mouse‐Cultured Cortical
Neurons. Basic & clinical pharmacology &
toxicology, 110(2), 141-144.
Schultz, S., Gould, G. G., Antonucci, N., Brigida, A. L., & Siniscalco,
D. (2021). Endocannabinoid system dysregulation from acetaminophen use
may lead to autism spectrum disorder: could cannabinoid treatment be
efficacious?. Molecules, 26(7), 1845.
Scienza-Martin, K., Lotz, F. N., Zanona, Q. K., Santana-Kragelund, F.,
Crestani, A. P., Boos, F. Z., … & Quillfeldt, J. A. (2022). Memory
Consolidation Depends on Endogenous Hippocampal Levels of Anandamide:
CB1 and M4, but Possibly not TRPV1 Receptors Mediate AM404
effects. Neuroscience, 497, 53-72.
Seth, B. (2022). Non-opioid medication in pain
medicine. Anaesthesia & Intensive Care Medicine, 23(7),
391-394.
Shaheen, S. O., Lundholm, C., Brew, B. K., & Almqvist, C. (2019).
Prescribed analgesics in pregnancy and risk of childhood
asthma. European Respiratory Journal, 53(5)
Sherbash, M., Furuya-Kanamori, L., Nader, J. D., & Thalib, L. (2020).
Risk of wheezing and asthma exacerbation in children treated with
paracetamol versus ibuprofen: a systematic review and meta-analysis of
randomised controlled trials. BMC Pulmonary
Medicine, 20(1), 1-6.
Snipes, J. A., Kis, B., Shelness, G. S., Hewett, J. A., & Busija, D. W.
(2005). Cloning and characterization of cyclooxygenase-1b (putative
cyclooxygenase-3) in rat. Journal of Pharmacology and Experimental
Therapeutics, 313(2), 668-676.
Southren, D. L., Nardone, A. D., Haastrup, A. A., Roberts, R. J., Chang,
M. G., & Bittner, E. A. (2021). An examination of gastrointestinal
absorption using the acetaminophen absorption test in critically ill
patients with COVID‐19: a retrospective cohort study. Nutrition in
Clinical Practice, 36(4), 853-862.
Souza, V. D., Shetty, M., Badanthadka, M., Mamatha, B. S., &
Vijayanarayana, K. (2022). The effect of nutritional status on the
pharmacokinetic profile of acetaminophen. Toxicology and Applied
Pharmacology , 438 , 115888.
Spyker, D. A., Dart, R. C., Yip, L., Reynolds, K., Brittain, S., &
Yarema, M. (2022). Population pharmacokinetic analysis of acetaminophen
overdose with immediate release, extended release and modified release
formulations. Clinical Toxicology, 60(10), 1113-1121.
Stueber, T., Meyer, S., Jangra, A., Hage, A., Eberhardt, M., & Leffler,
A. (2018). Activation of the capsaicin-receptor TRPV1 by the
acetaminophen metabolite N-arachidonoylaminophenol results in
cytotoxicity. Life sciences , 194 , 67-74.
Topuz, R. D., Gündüz, Ö., Karadağ, Ç. H., & Ulugöl, A. (2020).
Non-opioid analgesics and the endocannabinoid system. Balkan
medical journal , 37 (6), 309.
Vigo, M. B., Pérez, M. J., De Fino, F., Gómez, G., Martínez, S. A.,
Bisagno, V., … & Ghanem, C. I. (2019). Acute acetaminophen
intoxication induces direct neurotoxicity in rats manifested as
astrogliosis and decreased dopaminergic markers in brain areas
associated with locomotor regulation. Biochemical
Pharmacology , 170 , 113662.
Zacharia, G. S., & Jacob, A. (2023). Acetaminophen: A Liver Killer or
Thriller. Cureus , 15 (10).
Zaitone, S. A., El-Wakeil, A. F., & Abou-El-Ela, S. H. (2012).
Inhibition of fatty acid amide hydrolase by URB597 attenuates the
anxiolytic-like effect of acetaminophen in the mouse elevated plus-maze
test. Behavioural pharmacology , 23 (4), 417-425.