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SUMMARY

Genetics and biochemistry have defined the com-
ponents and wiring of the signaling pathways that
pattern the embryo. Among them, the transforming
growth factor b (TGF-b) pathway has the potential
to behave as a morphogen: in vitro experiments es-
tablished that it can dictate cell fate in a concentra-
tion-dependent manner. How morphogens convey
positional information in a developing embryo,
when signal levels change with time, is less under-
stood. Using integrated microfluidic cell culture and
time-lapse microscopy, we demonstrate here that
the speed of ligand presentation has a key and
previously unexpected influence on TGF-b signaling
outcomes. The response to a TGF-b concentration
step is transient and adaptive: slowly increasing the
ligand concentration diminishes the response, and
well-spaced pulses of ligand combine additively, re-
sulting in greater pathway output than with constant
stimulation. Our results suggest that in an embryonic
context, the speed of change of ligand concentration
is an instructive signal for patterning.

INTRODUCTION

The morphogen model (Wolpert, 2006) posits that during embry-

onic development, the morphogen level conveys positional

information and determines cell fate. This simple picture is

complicated by the fact that morphogen levels in a developing

tissue are not static (Harvey and Smith, 2009; Kerszberg and

Wolpert, 2007; Lee et al., 2001; Schohl and Fagotto, 2002) and

that the temporal history of stimulation can have an influence

comparable to morphogen levels on patterning (Kutejova et al.,

2009). The range of possible dynamic signals that could be

encountered during development is quite diverse: a monotone

increasing signal patterns the vertebrate dorsoventral axis

(Schohl and Fagotto, 2002), the fly wing disc (Wartlick et al.,

2011), and the neural tube (Balaskas et al., 2012); oscillatory sig-

nals occur during somatogenesis (Aulehla and Pourquié, 2010);

and pulsatile signals were recently observed in Xenopus animal
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caps (Warmflash et al., 2012). However, because the dynamics

of the ligands that initiate these events in a developing embryo

are often hard to discern and tomanipulate, it is difficult to disen-

tangle the relative contributions of morphogen levels and dy-

namics of ligand presentation to the downstream response.

Here we examine how the time course of ligand presentation

affects the activity of transforming growth factor b (TGF-b)

signaling in the myoblast progenitor C2C12 cell line, a model

for TGF-b-regulated signaling and differentiation (De Angelis

et al., 1998; Katagiri et al., 1994; Liu et al., 2001). We adapted

an automated microfluidic cell culture platform (Gómez-Sjöberg

et al., 2007) that allows us to apply complex time courses of stim-

ulation and record individual cell responses in real time with

video microscopy (Figure S1 available online). Cells grew in the

microfluidic chambers at a rate comparable to that observed in

regular cell culture dish, and growth was unaffected by either im-

aging or TGF-b1 stimulation (Figure S2). This approach allows a

direct and quantitative measurement of the relationship between

the dynamics of ligand presentation, transcriptional response,

and the specification of discrete fates.

The transcriptional response to TGF-b signaling is mediated

by the complex of a receptor-activated Smad (R-Smad) with

the coregulator Smad4. Ligand binding to TGF-b receptors leads

to R-Smad phosphorylation, complex formation with Smad4,

and nuclear translocation (Massagué et al., 2005). Receptor

Smad2 and Smad3 respond specifically to activin, nodal, and

TGF-b ligands, whereas receptor Smad1, Smad5, and Smad8

respond to bone morphogenetic proteins (BMPs) and growth

and differentiation factors (Figure 1A). Using cells expressing a

GFP-Smad4 fusion, we have recently shown that the response

to a step increase in TGF-b1 was transient and adaptive: even

though the R-Smad, Smad2, and Smad3 remained phosphory-

lated and localized to the nucleus for as long as TGF-b ligand

was present in solution, transcription, measured either by RT-

PCR of endogenous target genes or synthetic TGF-b reporters,

terminated after about 4 hr (Warmflash et al., 2012) (Figures

1B–1H and S2N–2P). The C2C12 cell lines stably transfected

with fluorescently labeled Smads as reporters responded nor-

mally to stimulation compared to untransfected cells, and the

temporal profile of GFP-Smad4 nuclear localization tracked

transcriptional activity of endogenous target genes under all

conditions examined (Warmflash et al., 2012). The fluorescent

Smad4 fusion protein is therefore an attractive reporter of

pathway activity since it reveals the immediate consequences
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Figure 1. Pathway Response to a Ligand Step Is

Adaptive and Graded

(A) Components of the TGF-b signal transduction cascade.

(B–D) Evolution of GFP-Smad4 (green) intracellular localiza-

tion after a step stimulation with TGF-b1. Before stimulation

GFP-Smad4 is mostly cytoplasmic (B); GFP-Smad4 is re-

localized in the nucleus 1 hr after the start of stimulation (C)

and returns to the cytoplasm by t = 5 hr (D). Scale bar, 20 mm.

(E) Average nuclear to cytoplasmic ratio of GFP-Smad4 as a

function of time in response to a step increase of TGF-b1

concentration from 0 to 0.5 ng/ml (n � 400 cells).

(F) Dose-response curve for GFP-Smad4. The ‘‘Smad4 jump’’

response is defined as the maximum in the Smad4 curve

relative to the prestimulus baseline (see Figure S1D). Each

point is the average of the jumps of all the cells present in

one chamber (n � 400). Data from two different chambers

are plotted. The response ðIÞ is well fit by the expression

I= a3ðL=K + LÞ+b, where L is the ligand concentration,

K = 0:20±0:08 ng/ml is the inflection point, and a and b are

two constants (black line).

(G and H) Statistical analysis of single-cell response for a

few TGF-b1 concentrations. The distribution of single-cell

response amplitude (‘‘jump’’) is single peaked and gradedwith

ligand level (G). Most cells respond within 1 hr of the step up in

ligand irrespective of ligand level (H).

(I and J) Evolution of NLuc signal in single cells after a step

stimulation with TGF-b1. Around 5 hr after of beginning of

stimulation, an 8- to 10-fold increase of the luminescence

signal (blue) is observed. NLuc was fused to a nuclear locali-

zation signal (NLS) to simplify image analysis. Scale bar,

20 mm.

(K) Average transcriptional activity downstream of TGF-b

stimulation (n� 400), asmeasured by the luminescence signal

of the CAGA12-NLuc reporter, as a function of time in response

to a step increase of TGF-b1 concentration. Dotted line: fit

of our adaptive model (see Supplemental Experimental Pro-

cedures, section 6).

(L) Dose response of TGF-b-induced luminescence signal of

the CAGA12-NLuc reporter. The response is defined as the

maximum in the average luminescence curve relative to

the prestimulus baseline, normalized by the response to the

highest dose (n � 400). The response ðIÞ is well fit by the

expression I= a3ðL=K + LÞ+b, where L is the ligand concen-

tration, K = 0:24±0:1 ng/ml is the inflection point, and a and b

are two constants (black line).

See also Figures S1 and S2.
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of receptor activation, and when coexpressed with a nuclear

marker, is very amenable to quantitative single-cell imaging.

However, in order to understand how pathway activity is inter-

preted at the level of gene expression, the dynamics of Smad

transcription factors should be correlated to the downstream

transcriptional response. Traditional population assays destroy

the sample, assume homogeneity, and could not practically

follow the complex stimuli we apply; we wanted instead to be

able to measure transcriptional response in real time and with

single-cell resolution. For that purpose, we fused a synthetic pro-

moter (Dennler et al., 1998) specific to the Smad3 branch of the

TGF-b pathway (CAGA12) to the NanoLuc luciferase (NLuc), an

engineered luminescent protein (Hall et al., 2012) that is more

than 1003 brighter than its Firefly and Renilla variants and there-

fore allows for detection of luminescence in single cells (Fig-

ure S1). An identical construct with the NLuc replaced with GFP

yielded fluorescence below background levels in our cells. Lumi-

nescence does not suffer from autofluorescence or excitation

backgrounds, and it allows for longer exposure times and there-

fore greater sensitivity. A synthetic reporter eliminates potential

transcriptional feedback that could modulate a natural promoter.

Since the substrate for NLucwas unstable under cell culture con-

ditions, time-lapse imaging required our microfluidic technology

to apply fresh substrate each time an image was acquired and

wash it off afterward, minimizing toxicity. Periodic exposure to

substrate also conveniently destabilized NLuc, thus lowering

background and revealing the transcriptional response with

better temporal resolution. The CAGA12-NLuc-induced lumines-

cence could readily be observed using a standard microscopy

charge-coupled device camera with 2 min exposure time, and

addition of TGF-b1 ligand triggered an 8- to 10-fold increase of

the signal (Figures 1I–1L). SeeExperimental Procedures, Supple-

mental Information, and Figure S1 for a complete characteriza-

tion of our CAGA12-NLuc reporter system.

RESULTS

TGF-b Pathway Response Is Adaptive and Graded
To establish how C2C12 cells encode different levels of

morphogen and to make sure cells behaved the same way in

themicrofluidic chip as in a regular cell culture dish,wefirst asked

how cells respond to a step increase in TGF-b1 ligand for various

concentrations (Figures 1B–1F). These time courses of stimula-

tionprovide adose-response calibration andserve asa reference

for the more complex temporal stimulations examined below.

Culture medium containing different concentrations of TGF-b1

ligand was renewed every hour to ensure proper control over

the ligand concentration. Comparison of the dose response

with prior experiments in regular cell culture conditions rules

out significant ligand depletion at low concentrations in the small

microfluidic chambers.Consistentwith ourprevious experiments

(Warmflash et al., 2012), GFP-Smad4 only localized transiently to

the nucleus following the step, despite continuous stimulation

(Movie S1). Single-cell analysis showed that for all concentra-

tions, the vast majority of cells responded in a graded manner

to the ligand step, with a pulse that peaks within 1 hr (Figures

1Gand1HandS2).Weobserved that full GFP-Smad4adaptation

depends on cell density (Figure S2Q). In the following, to ensure

consistency between experiments, we worked in conditions
336 Developmental Cell 30, 334–342, August 11, 2014 ª2014 Elsevie
where adaption was complete (initial density, �300 cells/cham-

ber). The transcriptional response measured with our CAGA12-

NLuc reporter is also transient (Figure 1K).

We used modeling to show that all the time-dependent

stimuli assayed by NLuc expression were consistent with a sim-

ple phenomenological model. Unlike previous modeling work

focusing on the molecular details of the pathway (reviewed in Zi

et al. [2012]), our model defines the response with only two rate

parameters, a timescale for adaptation and the �5 hr NLuc half-

life (Figure 1K). See also the Experimental Procedures and Sup-

plemental Experimental Procedures, section 6, for a complete

description of the fitting procedure. The best fit required TGF-

b-driven transcription to be adaptive, with a peak about 1 hr after

a step in ligand stimulation. This agrees with the observed dy-

namics ofGFP-Smad4 and is a further consistency check. Finally,

aswithGFP-Smad4, theNLuc dose response is gradedwith con-

centration and follows a simple sigmoidal curve (Figure 1L).

Pulsed Stimulation Increases Pathway Throughput
Wehave previously shown that Smad4 pulses repetitively into the

nucleus in blastula- and gastrula-staged Xenopus animal caps

(Warmflashet al., 2012). To investigate theconsequencesof puls-

ing, we stimulated cells with 1 hr pulses of TGF-b1 separated by

6 hr and obtained a transient response for each pulse (Figure 2A;

Movie S2). Under the same stimulation protocol, the signal from

the CAGA12-NLuc reporter approximately doubles from the first

pulse to the second and then saturates at a value representing

the balance between its production and decay that was fit with

the same model and parameters as for the step stimulation (Fig-

ure 2B) and mathematical supplement. If the protein was stable,

its accumulation would simply count the number of pulses. At

the single-cell level, there is no correlation in the amplitude of

response to successive pulses repeated every 6 hr (Figure S3),

and pulses of different heights elicit an autonomous response

independent of the previous pulse (Figure 2D). When the pulse

repeat rate becomes comparable to the adaptation time, there

is a diminished response around an elevated plateau (Figures

2CandS3A–S3L). Thesingle-cell responsesare reduced inampli-

tude but still uncorrelated from pulse to pulse (Figure S3). For an

adaptive system, such as the systemdescribed in Figure 1, pulsa-

tile stimulation could be a mechanism for overcoming adaptation

to continuous simulation and increasing pathway throughput.

C2C12 Differentiation Is Blocked More Effectively by
TGF-b Pulses Than Continuous Stimulation
We next addressed the consequences of pulsed ligand delivery

for cell fate specification. TheC2C12progenitors candifferentiate

to myotubes when exposed to differentiation medium (DM), and

presentation of TGF-b1 inhibits this differentiation (Figure 2E).

Working in a standard cell culture dish, we compared the ability

TGF-b1 to block cell differentiationwhen presented either contin-

uously during 15 hr or as three 1-hr-long pulses separated by 6 hr,

spanning the same total time (Figure 2F). We controlled for TGF-

b1 lifetime by using the same TGF-b1-containing media to create

the three pulses. After 24 hr, we used immunofluorescence to

quantify the fractionof cells expressingmyogenin, anearlymarker

of commitment to terminal myotube differentiation (Tapscott,

2005) (Figures 2E–2K and S3M–S3T). Again, pulsatile stimulation

proved to be more effective at blocking differentiation, and
r Inc.



Figure 2. Pulsed Stimulation Increases

Pathway Throughput and Fate Regulation

(A) Evolution of GFP-Smad4 nuclear to cyto-

plasmic ratio (thick line, left axis) in response to a

pulsatile stimulation. Period of stimulation is 7 hr.

(B) Comparison of the transcriptional activity

downstream of TGF-b stimulation, as measured

by the luminescence signal of the CAGA12-NLuc

reporter, when the cells are stimulated with a step

(black) or pulsed (blue) stimulation. Dotted lines: fit

using the same model parameters as in Figure 1K.

(C) Same as in (A), but with a period of stimulation

of 3 hr, showing that when the frequency of stim-

ulation is increased, the amplitude of the averaged

response to each pulses decreases.

(D) Same as in (A), but with pulses of variable

amplitude, showing no memory in the response.

(E) Differentiation program of the myoblastic cell

line C2C12. GM, growth medium.

(F) Experimental procedure: exposure to DM alone

is contrasted with continuous 15 hr exposure or

three 1 hr pulses of TGF-b1. The concentration

was 0.1 ng/ml in all cases.

(G–I) Immunofluorescence staining of the cultures

against myogenin (green channel). (G) Control

DM only. (H) DM + TGF-b1 step. (I) DM + TGF-b1

pulses. Counterstain, DAPI (blue). Scale bar,

100 mm.

(J) Normalized distribution of single-cell intensity

of myogenin signal for the three conditions color

coded as in (F). Cells can be separated in two

populations: myogenin negative or myogenin

positive based on fluorescent intensity. For each

condition, n > 10,000. Vertical line represents the

threshold between the two populations.

(K) Comparison of the percentage of myogenin-

positive cells, as defined in (F), for the three con-

ditions. The pulses are on average 2.5 times more

effective that the step in preventing differentiation

(p < 10�5). Error bar are given by the SEM from ten

randomly selected fields.

See also Figure S3.
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2.5 times fewer cells expressed myogenin in the pulsatile case

(p value < 10�5 versus step simulation), despite the fact that the

total duration of ligand exposure was only 3 hr compared to

15 hr in the step stimulation. Thus pulsed stimulationwith a period

exceeding theadaptation timeenhancesboth total transcriptional

activity and the regulation of cell fate, and the effect is nearly pro-
Developmental Cell 30, 334–342
portional to the number of pulses (2.5

times from three pulses). Pulsed stimula-

tion is a general mechanism to bypass in-

ternal feedbacks limiting pathway output.

This mechanism could be at work in blas-

tula- and gastrula-staged Xenopus animal

caps, where all timescales are shorter

(Warmflash et al., 2012).

Pathway Activity Depends on the
Speed of Concentration Increase
Another generic property of adaptive sys-

tems is that their response depends not
only on the level but also on the rate of stimulation (Tu et al.,

2008). Adaptation to a step in stimulus suggests that the system

filters out the concentration of ligands that change slowly in

time irrespective of their absolute level. To probe this aspect of

the temporal response of the pathway, we stimulated the cells

with a linear ramp in ligand at various rates of increase (Figures
, August 11, 2014 ª2014 Elsevier Inc. 337



Figure 3. PathwayActivity Depends onRate

of Change

(A–D) Evolution of GFP-Smad4 nuclear to cyto-

plasmic ratio (thick lines, left axis) in response to

increases of the TGF-b1 concentration (right axis)

from 0 to 0.5 ng/ml (a nearly saturating dose) at

various rates of increase.

(E–H) Evolution of the transcriptional activity

downstream of TGF-b stimulation, as measured

by the luminescence signal of the CAGA12-NLuc

reporter in response to increases of the TGF-b1

concentration from 0 to 0.5 ng/ml (a nearly satu-

rating dose) at various rates of increase. Dotted

lines: fit using the same model parameters as in

Figure 1K.
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3A–3D). We found that when the increase is sufficiently fast

compared to the adaptation time, the response was comparable

to step stimulation. The maximum in the GFP-Smad4 response

curve clearly decreased with decreasing ramp rate (Figures

3A–3D). The single-cell response became more diffuse in slow

ramps in comparison to steps (Figure S4A), as expected for an

adaptive system. Again, the transcriptional response measured

with the CAGA12-NLuc is consistent with the observation made

with GFP-Smad4, as confirmed by the fits (Figures 3E–3H, S4,

and Supplemental Experimental Procedures, section 6). The

rate of ligand delivery has a pronounced effect on cellular

response to TGF-b stimulation: the response to a given level

can be all or nothing depending on the speed at which the con-

centration has been increased.

Our observation that the speed of increase of concentration is

as relevant as concentration itself has important consequences

as to how a cell reading the morphogen through an adaptive
338 Developmental Cell 30, 334–342, August 11, 2014 ª2014 Elsevier Inc.
pathway can learn its position relative to

a source. Consider a morphogen that dif-

fuses from a source and is degraded. Its

steady-state profile is exponential (Fig-

ure 4A), but the speed of morphogen

increase also depends on the distance

to the source (Figure 4B). We can now

contrast how two pathways, a ‘‘linear’’

and an ‘‘adaptive’’ pathway, will respond

to this ligand time course and extract po-

sitional information. The linear pathway

responds only to ligand level (Figure 4C),

while the adaptive pathway is sensitive to

both level and speed, and its response to

a step is transient (Figure 4D). Both path-

ways will produce a response that

depends on the distance to the source

(Figures 4E and 4F); however, the fact

that the adaptive response peaks well

before the linear response reaches

steady state would tend to suggest that

the time required for a fate decision is

much less for cells using an adaptive

pathway. This could well confer a fitness

advantage in rapidly developing embryos

(Figures 4G and 4H). To test that idea, we
have utilized the pathway responses from Figures 4E and 4F as

the input to a gene regulatory network (GRN) (Saka and Smith,

2007) featuring the minimal set of elements to achieve fate

determination: mutual repression between fates and bistability

(see Figure 4G and Supplemental Experimental Procedures,

section 7). Factor B is more sensitive to TGF-b and is excluded

from the region of highest morphogen by repression from factor

A. The GRN responds rapidly so as to track the pathway

response, and the bistability then locks in the maximum signal

seen by a cell. We chose the parameters of the GRN for each

case so that the adaptive and linear models resulted in identical

spatial patterns and then compared the time to achieve those

patterns. The result is clear-cut: the final French flag pattern is

reached three times faster if an adaptive pathway is used to

read the morphogen gradient (Figures 4H and 4I and Movie S3).

The dynamic response of the adaptive pathway also has the

advantage that it is insensitive to ligand dynamics: a 10-fold



Figure 4. Speed Fating: An Adaptive

Signaling Pathway Can Extract Positional

Information without a Spatial Gradient

(A) At t = 0, a morphogen (in blue) is allowed to

diffuse in a tissue from a constant source located

in x = 0 (upper panel). The diffusion constant is D

and ligand decays at a rate k. In such conditions,

the steady state profile of concentration is an

exponential gradient with characteristic length

l=
ffiffiffiffiffiffiffiffiffi
D=k

p
(lower panel). Colored circles represent

cells at various distances from the source.

(B) The temporal profile of ligand concentration,

calculated at various distances from the source (x)

and for ligand parameters, D; k, characteristic for

embryonic development (Müller et al., 2012), show

that both the steady-state concentration and the

speed at which this steady state is reached

depend on the distance to the source. Color code

in (A) or (F).

(C and D) Comparison of a linear pathway (C) and

an adaptive pathway (D) responding to a ligand

step as in (B);. For the ‘‘linear’’ pathway, the

response ðyÞ to ligand input ðIÞ is given by

the differential equation _y = I� cy; where c sets

the time scale of response. The adaptive pathway

is defined by the system _y = I� cy � 0:25c2:x; _x = y

(see Supplemental Information) where again c sets

the response time and x is a feedback. The

reaction time of both pathways is defined to be

identical ðc= 10h�1Þ, and both of them have an

amplitude of response that is linear with the ligand

concentration. As a consequence they would

show an identical dose-response curve to ligand

presented as a step.

(E) Response of the linear pathway (C) to the

different ligand profiles presented in (B). The linear

pathway can extract positional information, i.e.,

the observed response varies as a function of the

distance from the morphogen source. Color code

for distance follows (F).

(F) Response of the adaptive pathway (D) to the

different ligand profiles presented in (B) depends

on the distance to the morphogen source. How-

ever, the differentiation decision, defined by the

time of the response maximum in the adaptive

case or when the response saturates for the linear

pathway, can be faster in the adaptive system.

(G) Minimal GRN for fate decision between two

fates (A and B) induced downstream of TGF-b

pathway activity. Factor A is activated at lower

TGF-b levels than factor B, as depicted by the

thickness of the arrows.

(H and I) Establishment of a French flag pattern

in function of time for a linear (H) or adaptive

(I) pathway. Fate A (blue) and fate B (white) are

induced downstream of TGF-b signaling, and A

represses B as in the GRN described in (G). Fate C

(red) represents the default fate (both A and B are

off). When an adaptive pathway is used, the final

pattern is reach three times faster.

(J) Comparison of how the two pathways extract

positional information from a spreading gradient of

morphogen. The adaptive pathway is more efficient at patterning since its distance-response curve is much sharper. Furthermore, the response-distance

function of the adaptive system is insensitive to changes in morphogen properties (dotted lines, 10-fold decrease in decay rate), whereas the linear pathway is

sensitive.

(K) In the extreme case of no ligand decay (k = 0), the steady-state concentration profile does not depend on position, but the adaptive pathway can still extract

position information, while the linear pathway fails to do so.

See also Figure S4.
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decrease in the ligand decay rate leaves the relative response as

a function of distance unchanged for the adaptive pathway,

while it becomes much flatter for cells using a linear pathway

(Figure 4J). Nothing changes with the adaptive pathway in the

extreme case that the morphogen does not decay at all, while

the linear pathway conveys no information about position in

this condition (Figures 4K and S4I and S4J. We term positional

information acquired through an adaptive pathway ‘‘speed

fating.’’

DISCUSSION

The influence of the speed of increase of morphogen concentra-

tion on cell response has been generally overlooked. This is

mostly because the key experiments (Green et al., 1992; Gurdon

et al., 1999), including our own (Wilson et al., 1997), that estab-

lished that both the activin/nodal and BMP branches of the

TGF-b pathway behave as morphogens, i.e., that different con-

centrations of ligand could give rise to different fates, were per-

formed by delivering ligand steps or short pulses of variable

height to isolated Xenopus blastula cells, in vitro. More realistic

temporal stimuli were not considered. In particular a ligand

step does not discriminate between an adaptive response and

a response that registers level only.

Static and dynamic positional information are not mutually

exclusive, and one biochemical pathway can display either

behavior or a blend, depending on kinetic parameters. Their rela-

tive contribution can drift during evolution, while the complex

downstream transcriptional gene network that assigns distinct

fates to pathway output remains invariant (Balaskas et al.,

2012; Saka and Smith, 2007). However the adaptive sensing of

position is invariably faster, less contingent on ligand parameters

such as decay rate, and inherently more robust to slow changes

in protein levels or the environment. Bacterial chemotaxis is a

good example of this strategy, and a phenotypic model similar

to ours was used to fit ramp stimuli (Tu et al., 2008). Exact adap-

tation is not required for speed fating, merely maximal response

proportional to the time rate of change.

In our experiments the ligand directly activated the pathway,

while in the embryo signaling results from a complex interaction

of activators and inhibitors. Nevertheless measurement of Wnt,

TGF-b, and BMP signaling in Xenopus (Lee et al., 2001; Schohl

and Fagotto, 2002) shows that activation of the associated

transcriptional effectors (b-catenin, Smad2, Smad1) increases

in time and does so most rapidly in regions associated with the

greatest pathway activity (e.g., ventral for BMP4). What matters

for speed fating is the temporal profile of pathway activity,

which will obviously integrate contributions of both inhibitors

and activators.

Negative feedback following stimulation, either intracellular

through receptor inactivation or extracellular through secreted

inhibitors, is a very common feature of the signal transduction

pathways that are used throughout development and would

tend to lead to partial adaptation. So, independently of the exact

molecular details that are specific to each system, the possibility

that the time derivative of a signal confers positional information

has to be considered, and dynamic characterization of signaling

pathways in terms of input-output should be included in modern

morphogen models.
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EXPERIMENTAL PROCEDURES

Microfluidic Cell Culture and Imaging

Cell culture chips were obtained from the Stanford Foundry and controlled by

custom-made MATLAB interface adapted from the one kindly provided by the

Quake laboratory. Prior to C2C12 cell seeding, chambers were coated with

20 mg/ml fibronectin from bovine plasma (Sigma) for at least 2 hr. The day pre-

ceding the experiment, �100 cells/chamber were seeded. Cells were fed

every hour either with growth medium (GM) (Dulbecco’s modified Eagle’s me-

dium [DMEM] + 10% fetal bovine serum) alone or with GM containing TGF-b1

according to the time course of ligand concentration shown in figures, except

for the experiment shown in Figure 3A wherein medium was changed every

0.5 hr. Fluorescence imaging of GFP-Smad4 was performed every 15 min.

NLuc luminescence was acquired every hour, and fresh NLuc substrate was

provided before each acquisition. Single-cell data were extracted using

custom-made MATLAB image analysis routines.

C2C12 Differentiation

At confluence (t = 0), culture medium was switched from GM to either differen-

tiation medium ([DM], DMEM + 2% horse serum) only or DM complemented

with 0.1 ng/ml TGF-b1. TGF-b1 was presented either continuously for 15 hr

(step) or as three 1-hr-long pulses each separated by 6 hr. To control for ligand

consumption/degradation, the medium used for the first pulse was saved

and used for the subsequent pulses. All samples were fixed and stained for

myogenin (Developmental Studies Hybridoma Bank clone F5D, 1:200) at

t = 24 hr, following standard immunofluorescence protocols, as detailed in

Supplemental Experimental Procedures.

CAGA12-NLuc Single-Cell Imaging

TGF-b-responsive elements are appealing candidates for a single-cell TGF-b re-

portersystem,butunfortunately theydidnotproduceenoughsignal fordetection

at the single-cell level when driving expression of either GFP or firefly luciferase.

We thus switched to NLuc, a small (19.1 kDa) engineered luciferase

commercially available from Promega (Hall et al., 2012). The enzyme is adver-

tised to be 150-fold brighter than other luciferases. It uses furimazine, a coe-

lenterazine analog as a substrate. Unfortunately, furimazine is not stable under

conventional cell culture conditions (half-life, �1 hr). In order to solve that

issue, we took advantage of the cell culture chip capabilities: the NLuc sub-

strate was kept in a refrigerated container in an oxygen-free atmosphere to

prevent its degradation for days. Before each acquisition, fresh substrate

(10 mM in DMEM) was flushed over the cells and then rinsed once the picture

was acquired, thus minimizing cell exposure to the substrate. We observed

that this procedure conveniently destabilized NLuc to about half its half-life

(�5 hr). Single-cell luminescence signal was measured once per hour.

CAGA12-NLuc luminescence could readily be detected in single cells with

2 min exposure times (objective, 103 0.45 NA; camera, Hamamatsu ORCA

R2, maximum gain, binning 4). See Supplemental Experimental Procedures,

section 5, and Figure S1 for a detailed description of the validation of the

CAGA12-NLuc reporter system.

Fitting NLuc Transcriptional Response

In order to quantify the degree of internal consistency among our two

reporters, GFP-Smad4 and CAGA12-NLuc, for various dynamic stimuli, we

have designed a model with only three essential parameters (after allowing

for a scale factor to define microscope camera units), each of which can be

tied fairly tightly to a single experiment: the timescale of adaptation ð2=cÞ,
the half maximal effective concentration of the dose-response curve to

TGF-b stimulation ðKIÞ, and the lifetime of NLuc ðtÞ. At the core of our signal

transduction cascade is an adaptive module. See Figure S4B for a graphic

presentation of the model. A linear model for adaptation had the fewest free

parameters and proved adequate for our data:

_x = y (Equation 1)

_y = � c2

4
x � cy + I; (Equation 2)

where I is the ligand-dependent input and y is the output of the adaptive mod-

ule. The response of this module following an input step at t = 0 is
r Inc.
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y = Ite�ct=2; (Equation 3)

which is in good agreement with the single-cell GFP-Smad4 data, in particular

because the timescale for adaptation ð2=cÞ is ligand independent (Figure 1H)

as assumed in the model. It is worth noting that this is not the case with other

commonly used adaptive circuits, such as the incoherent feedforward loop

where the adaptation time varies with the inverse input level, i.e., I has units

of frequency.

Upstream of the adaptive module is a receptor module. The dependence of

both Smad4 and NLuc in response to a ligand step L scales as L=ðKI + LÞ (Fig-
ure 1), so it is plausible to simply model the receptormodule and its connection

to adaptation by

I= L=ðKI + LÞ: (Equation 4)

For the transcriptional output downstream of the adaptive module, we used

_z1 =maxð0; yÞ � z1=t (Equation 5)

_z2 = z1 � z2=t; (Equation 6)

where z1 can loosely be thought of as message and z2 as protein (NLuc). The

relaxation time t need not be the same in the two equations, but since the data

require t � 5 hr, while the adaptive system has a timescale of �1 hr, the time

course of z2 is largely insensitive to how relaxation time is distributed between

the two equations, so we made the rates equal, thereby eliminating a param-

eter that would be impossible to fit. Fits of the NLuc data are presented in Fig-

ures 1K, 2B, 3E–3H, and S4. A detailed description of the fitting procedure and

hypothesis is given in Supplemental Experimental Procedures, section 6.

Model for Dynamic Embryonic Patterning

To reinforce the intuition that adaptive systems can infer position from the

rate the ligand changes in time, we consider that argument in a more

mathematical manner. As an idealized model of morphogen spreading in an

embryo, we consider a ligand ðLÞ that diffuses into the region at x>0; with a

diffusion constant ðDÞ from an infinite source in x = 0 and that is degraded at

a rate ðkÞ

vtLðx; tÞ=Dv2xLðx; tÞ � kLðx; tÞ; (Equation 7)

which gives

Lðx; tÞ= x

2
ffiffiffiffiffiffiffi
pD

p
Z t

0

s�
3
2e�ks� x2

4Ds ds: (Equation 8)

For t =N, Equation 8 becomes LðxÞ= e�
ffiffiffiffiffiffi
k=D

p
x, the exponential gradient

of morphogen. We have plotted in Figure 4B the temporal profile of ligand

concentrations experienced by cells at various distances from the source of

morphogen.

We then compare how a linear pathway and an adaptive pathway respond

to the ligand profiles calculated from Equation 8. For the ‘‘linear’’ pathway,

the response ðyÞ to ligand input ðIÞ is given by the differential equation

_y = I� cy; (Equation 9)

where c sets the timescale of response. The adaptive pathway is defined by

the system

_y = I� cy � c2

4
x ; _x = y; (Equation 10)

where again c sets the response time and x is a feedback (note this is the same

system as the system we used to fit the NLuc data). The reaction time of both

pathways is defined to be identical ðc= 10h�1Þ, and both of them have an

amplitude of response that is linear with the ligand concentration. As a conse-

quence they would show an identical dose-response curve to ligand pre-

sented as a step (Figures 4E and 4F).

Finally, to make the point that the transcriptional output from adaptive sys-

tem can reach its maximal value and thus infer position well before the ligand

reaches its asymptotic value, we have modeled a bistable GRN that captures

the output ðyðtÞÞ of the signaling pathway from Equation 9 or Equation 10 and

renders it permanent. This is very consistent with standard embryology, where

a signal is applied during a window of competency, at the end of which the fate

of the targets is specified and no longer requires the signal.
Develop
Aminimal model requires two proteins,A;B, both bistable. They define three

territories in order of decreasing signal level:AONBOFF (blue stripe in Figures

4H and 4I), A OFF B ON (white stripe in Figures 4H and 4I), and both OFF

(red stripe in Figures 4H and 4I). This GRN is defined by the arrow diagram

in Figure 4G or by the system of equations

_A=mðtÞ+ A2

1+A2
� nAA (Equation 11)

_B=

�
mðtÞ+ B2

1+B2

�
1

1+A2
�
K2

A

� nBB; (Equation 12)

where mðtÞ is the time-dependent input from the morphogen signaling

pathway upstream of the GRN. It is a quadratic function of yðtÞ from Equation 9

or Equation 10 with parameters chosen to place the asymptotic expression

domains of A;B in defined locations. Results presented in Figures 4H and 4I

and Movie S3 show how this GRN assigns cell fate as a function of time. A

detailed description of the hypothesis behind this model is given in Supple-

mental Experimental Procedures, section 7.
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