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Abstract

Flooding is one of the most dangerous and costly natural hazards, and has a large im-
pact on infrastructure, mobility, public health, and safety. Despite the disruptive impacts
of flooding and predictions of increased flooding due to climate change, municipalities
have little quantitative data available on the occurrence, frequency, or extent of urban
floods. To address this, we have been designing, building, and deploying low-cost, ultra-
sonic sensors to systematically collect data on the presence, depth, and duration of street-
level floods in New York City (NYC), through a project called FloodNet. FloodNet is

a partnership between academic researchers and NYC municipal agencies, working in con-
sultation with residents and community organizations. FloodNet sensors are designed

to be compact, rugged, low-cost, and deployed in a manner that is independent of ex-
isting power and network infrastructure. These requirements were implemented to al-

low deployment of a hyperlocal, city-wide sensor network, given that urban floods often
occur in a distributed manner due to local variations in land development, population
density, sewer design, and topology. Thus far, 87 FloodNet sensors have been installed
across the five boroughs of NYC. These sensors have recorded flood events caused by high
tides, stormwater runoff, storm surge, and extreme precipitation events, illustrating the
feasibility of collecting data that can be used by multiple stakeholders for flood resiliency
planning and emergency response.

1 Introduction

Of the many hazards that are expected to increase with climate change, flooding
is one of the most dangerous and costly (National Academies of Sciences, Engineering, |
land Medicinel [2019)), and can have a large influence on public health, infrastructure, and
mobility in urban areas (Galloway et al., 2018). For example, climate change is projected
to increase the frequency and magnitude of precipitation events (Lenderink & Van Mei- |
[jgaard, 2010} [Sillmann et al| 2013]), which can overwhelm urban rivers, streams, and drainage
systems, resulting in pluvial or fluvial flooding (National Academies of Sciences, Engi- |
neering, and Medicine, [2019)). Additionally, sea level rise associated with climate change
has been observed to increase coastal flooding during high tides. In New York City (NYC),
for example, there is an increasing trend in the number of days with cumulative rain-
fall over 1.75 inches since 1950 (Depietri & McPhearsonl [2018)), and in community-reported
evidence of coastal flooding due to high tides (Science and Resiliency Institute, Jamaica |
Bay, NYC] 2023)). While flooding from extreme events - such as hurricanes, typhoons,
and cyclones - can cause catastrophic damage, it has been estimated that floods from
smaller, yet more frequent, storms and high tide events have a large cumulative impact
as well (Moftakhari et al.| [2017; National Academies of Sciences, Engineering, and Medicinel,

2019).

Urban flooding is affected by a number of local factors including upstream land use
and development; the size of vegetated and impervious areas; population density and hu-
man contributions to the sewer system; drainage and sewer design; and physical char-
acteristics, including elevation and watershed topography. The combination of these fac-
tors make flood events highly specific to a city block, street corner, or other subsection
of a neighborhood (New York City Stormwater Resiliency Plan),[2021). The highly-localized
and ephemeral nature of urban flooding make it challenging to measure, as monitoring
needs to happen at a hyperlocal resolution and in real-time. As such, very little data ex-
ist on the frequency and extent of urban surface flooding (Galloway et al.,|2018), and
there is an unmet need for hyperlocal information on the presence, depth, and duration
of street-level floods.

There is a range of stakeholders that require real-time, accurate, and reliable data
on flood events, including flood frequency, depth, and profile in flood-prone locations (Silvérman
2022)). In discussions with city agencies, community members, and researchers,



we have identified needs that include: data for the development and validation of hydro-
logical models that predict flooding (city agencies and researchers; e.g., pluvial flood mod-
els produced as part of the New York City Stormwater Resiliency Plan (2021)); flood

data for resilience and transportation planning, emergency response, issuing flash flood
warnings, and tracking flood frequency over time (city agencies); data that can be used

for day-to-day decision making and longer-term advocacy when faced with living with

flood water (community members); and data that can signal when to collect samples when
evaluating flood water quality (researchers)(Silverman et al [2022). While some data sources
exist, such as crowd-sourced flood data and US Geological Survey (USGS) stream gauges,
each has limitations that prevent them from meeting all these needs (Helmrich et al., [2021)).

Crowd-sourced data, including social media posts and reports from community mem-
bers or citizen scientists - such as those made to the Community Flood Watch Project
in NYC (Science and Resiliency Institute, Jamaica Bay, NYC| [2023|) and NYC’s 311 ser-
vice request line (NYC 311} [2023)) - are limited in that they require that someone ob-
serves the event and that the observer creates a report (Helmrich et al., 2021; |Smith &
Rodriguez, |2017)). Additional challenges with crowd-sourced data are that the data are
not always correctly or precisely geotagged, reports rarely include flood depth readings
over the duration of an event, and observers are discouraged from collecting data dur-
ing hazardous conditions that might be present during high tides or extreme rain events.
Existing water level sensors, such as USGS stream gauges, overcome some of the chal-
lenges above by collecting continuous, real-time data on water depths in the locations
in which they are deployed. However, many of these sensors are deployed to monitor wa-
ter bodies as opposed to flooding at the street-level, and are too expensive and bulky
for large scale implementation in urban areas, which precludes their ability to be deployed
in a network to capture hyperlocal flooding across a city scale.

Therefore, our aim was to develop real-time flood sensors that overcome the lim-
itations described above. In particular, the goals of this work were to design a sensor that
is low-cost (allowing deployment of a large sensor network and increasing accessibility
for community science), accurate (enabling detection of flood depths as low as 25 mm),
flexible for multiple use cases and installation scenarios (not requiring power or connec-
tivity infrastructure), robust to withstand long-term deployment in the urban environ-
ment, and easy to construct with an open-source design. Community engagement and
collaboration with NYC municipal agencies are also core components of the FloodNet
project that have been instrumental in assisting project implementation, including se-
lection of sensor installation locations, development of tools for meaningful data access
and visualization, and collation of growing knowledge about the experience and impacts
of flooding within communities most at risk.

In this paper, we describe technical aspects of our project, FloodNet, including the
design of FloodNet’s ultrasonic-based sensor hardware, network architecture, data in-
gestion and analysis pipeline, and data visualization tools.

2 Prior Research on Flood Sensing

Previous research has been conducted to design water level sensors using various
sensing modalities, each of which has opportunities and limitations for measuring flood
depths. Moreover, most previous flood sensing efforts have focused on monitoring wa-
ter bodies, and have not been deployed in an urban street-level setting where the street
is dry most of the time. Here we discuss the strengths and weaknesses of prior flood mon-
itoring strategies, which have provided motivation and justification for the FloodNet sen-
sor design and hardware choices.

Generally, water level sensors can be divided into contact and non-contact designs
(Kang et al.| [2021)). Contact sensors include bubble or float gauges (Kang et al., 2021]),



pressure sensors (Garcia et al., [2015)), and capacitive or conductivity-based sensors (Chetpattananondh
. Pressure sensors placed within drainage infrastructure, for example, have
been used to detect street-level flooding through monitoring the surcharging of sewers
(Gold et all, [2023). Contact sensors, however, have a number of limitations that make
them ill-suited for wide-spread and long-term sensing of street-level floods. For one, con-
tact sensor readings are potentially influenced by the composition, temperature, and tur-
bidity of the water being monitored (Chetpattananondh et all 2014). Moreover, given
that these sensors must contact floodwaters that often have poor water quality, they are
subject to fouling and require frequent maintenance, which are challenges for long-term
installation. Additionally, the logistics of deploying contact sensors on the sidewalk or
street in the urban environment in a manner that allows water contact are challenging
and can make them susceptible to damage or vandalism.

Much recent development of water level sensor technologies has focused on non-
contact sensing modalities such as camera (Lo et al., 2015 Filonenko et al., |2015; Hi- |
[roi & Kawaguchi), 2016)), ultrasonic (Mousa et all, 2016} Loftis et al. [2018)), and LiDAR-
based sensors (Loftis et al., 2018} [Paul et al., [2020), given their relative low cost, ease
of installation, compatibility with wireless connectivity, and lower maintenance require-
ments when compared with sensors that contact flood waters.

Visual sensing techniques that utilize camera-based technologies (such as preex-
isting video surveillance cameras (CCTVs) or traffic cameras) paired with image anal-
ysis algorithms and computer vision have been used to generate real-time flood data and
predictive flood alerts (Lo et al.l 2015} [Filonenko et al., 2015; Hiroi & Kawaguchi, 2016;
Sabbatini et al 2021} [Moy de Vitry et all [2019; [Jan et all 2022} [Jafari et al] 2021} [Ar- |
shad et al., 2019). Camera-based sensors can be mounted to existing infrastructure and
provide quantitative complexity unmatched by one-dimensional data capture, but they
come with a host of challenges. For one, image analysis and computer vision approaches
can struggle with low-quality images, and cameras affected by heavy rain, fog, or glare
may not be able to provide useful data. These sensing systems also have limited success
in processing imagery in low light, limiting their nighttime effectiveness .
Data from camera-based sensors may not include flood depth measurements, and exist-
ing cameras are not always positioned in locations that are most at risk for flooding ich
. Moreover, these technologies use a large amount of power and are highly
reliant on availability of existing power and communication infrastructure, and there-
fore less independent and flexible than low-powered counterparts described below
. This also renders them vulnerable to extreme weather events, when they
may be needed the most. Finally, the use of cameras raises ethical concerns relating to
privacy, surveillance and consent. Collected images would need to be anonymized, risks
associated with unintended uses of imagery would need careful consideration, and strin-
gent data security protocols would be required.

Another camera-based approach to flood monitoring is the use of satellite imagery
to track flood water inundation. The unparalleled field of view and global coverage of-
fered make satellite-based sensing particularly suitable for large-geographical-scale flood
event tracking . However, its shortcomings - including the high cost of
long term image acquisition, low temporal and spatial resolution, difficulty in gathering
water depth data, and, importantly for pluvial flood events, its inability to obtain im-
agery through cloud cover (Olthof & Svacinal [2020) - make it impractical for urban flood
monitoring.

The increasing affordability of ultrasonic and LiDAR time-of-flight sensors has yielded
other novel flood monitoring approaches. Each of these sensor modalities detects water
levels by emitting a pulsed sound or light wave and measuring the round trip travel time
of the pulse after it reflects from a surface and returns to the sensor; this travel time can
be converted to distance based on the speed of the ultrasonic or LIDAR pulse.



LiDAR has become a popular tool to measure the physical world and is used for
oceanography, archaeology, topographical modeling, and urban planning. Paul et al. re-
cently used a LiDAR-based flood sensor to measure water levels with relative error around
0.1% and at angles as small as 40 degrees to the planar surface (Paul et al.l |2020). How-
ever, while LiDAR is becoming more affordable, it is still too expensive to deploy a large
number of sensors for spatial coverage at the city-scale, and it can be affected by both
the relative calmness and opacity of the water being measured (Paul et al.l 2020)). Ad-
ditionally, LIDAR is best used to measure complex surfaces and is difficult to scale in
a wireless environment, given the amount of raw data it produces.

Alternatively, several flood monitoring projects have had success in using ultrasonic
distance sensors given their low cost, low power consumption, and opportunities for flex-
ible deployment due to their ability to use solar power and transmit data over wireless
networks (Mousa et al., [2016; |Loftis et al.| [2018; |[Kang et al., [2021; |Bartos et al., [2018)).
Examples of flood monitoring projects that utilize ultrasonic sensors include StormSense,
an [oT water-level monitoring system in Hampton Roads, Virginia that employs wire-
less ultrasonic sensors that are deployed over water bodies and connected to a Long Range
Wide Area Network for data transmission (Loftis et al., [2018), Open Storm with instal-
lations in Ann Arbor, Michigan and Dallas-Fort Worth, Texas (Bartos et al., 2018)), and
an ultrasonic sensor project carried out by a research team from King Abdullah Univer-
sity of Science and Technology in Saudi Arabia that utilized ultrasonic sensors installed
over street traffic, to monitor and model flood events and traffic flow (Mousa et al., |2016]).

Due to the opportunities presented by ultrasonic-based sensors, we employed ul-
trasonic range finders as the basis for the FloodNet sensor design described below. While
prior studies have used ultrasonic sensor networks for riverine (Bartos et al., 2018) and
urban flood monitoring (Loftis et al,, 2018; Kang et al., |2021}; [Lo et al.| 2015} Hiroi &
Kawaguchil, 2016} Mousa et al.l |2016]), there are limited examples of such systems be-
ing deployed at street-level on a city-wide scale, let alone in a metropolitan area as dense
and granularly complex as New York City. FloodNet, as a result, offers a novel approach
to developing a scalable, reliable, and informative flood-sensing network to aid in urban
resilience efforts.

3 FloodNet Sensor Network

The FloodNet project is a collaboration between academic researchers at New York
University and the City University of New York with NYC municipal agencies: NYC Mayor’s
Office of Climate & Environmental Justice, NYC Office of Technology and Innovation,
and NYC Department of Environmental Protection. FloodNet has been focused on (1)
the design, construction, and deployment of sensors to record street-level floods in NYC;
(2) the development of data analysis tools to accurately process flood data; and (3) com-
munity engagement, data sharing, and the communication of flood data to various stake-
holders in meaningful ways. The FloodNet sensors (Figure [1)) are novel in that they were
designed to be compact, rugged, low-cost, and independent of existing urban power and
network infrastructure, allowing the project to go beyond the limitations of some pre-
viously developed ultrasonic flood sensing systems. These specifications make the de-
ployment of a hyperlocal, city-wide sensor network possible.

More specifically, the FloodNet sensor network was designed to meet the follow-
ing criteria:

. Sense water depth within an accuracy of < £25 mm

. Collect and transmit data to a central server every ~1 min

. Operate autonomously in the environment for long periods of time

. Operate independent of existing power and networking infrastructure

T W N =

. Comprise low-cost components for sensor network scalability
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Figure 1. (A) Closeup of the FloodNet sensor, showing the (i) ultrasonic sensor cone, (ii)
sensor housing, (iii) solar panel for battery charging, and (iv) antenna for data transmission. (B)
Signage that is installed with each sensor. (C) FloodNet engineers installing a sensor in the field.

(D) FloodNet sensor and sign installed on a U-channel pole in the Bronx, NY

In addition to sensor hardware, the FloodNet system includes a data ingestion and
analysis pipeline, user-facing dashboards that display sensor readings in real-time, and
a tool that can send automated flood alerts to subscribing government agencies, com-
munity members, or other stakeholders when a flood is detected. All information on the
sensor design, including build instructions, quality control practices, and data analysis
pipelines, is open-source and provided in a GitHub repository (FloodNet| [2022b]). While
FloodNet is currently focused on NYC, FloodNet sensor designs could be utilized in other
locations.

The following sections explain how FloodNet sensors meet the design criteria listed
above, with technical details on the sensor design, operation, deployment scenarios, and
networking infrastructure.

3.1 Sensor Core Components

FloodNet sensors (Figure [1)) use the Maxbotix MB7389 ultrasonic range-finder to
measure the distance to the horizontal surface below the sensor, with a detection range
between 30-500 cm, and 1 mm resolution. The sensor transmits 42 kHz ultrasound pulses,
which it detects on return to the sensor after reflection from any large surface directly
below. Sensor accuracy is a key design criterion for FloodNet, and the MB7389 sensor’s
datasheet specifies the accuracy as being within 1% of the measured distance, which equates
to a range of 30 mm (i.e., £15 mm) with a typical mounting height of 3 m, satisfying
design criteria 1; data illustrating this accuracy are described in Section [5.2

Data are collected by the sensor and transmitted every 60 s, satisfying design cri-
terion 2. Data transmission occurs through the use of Long Range Wide Area Network



(LoRaWAN), which is a low power, wide area (LPWA) networking protocol designed to
wirelessly connect battery operated devices to the internet. The microcontroller unit (MCU)
platform at the core of the sensor is the Heltec HTCC-ABO02 development board that

uses the Heltec HTCC-AMO02 as its MCU/LoRaWAN radio module, which integrates a
Semtech SX1262 LoRaWAN radio and PSoC 4000 series ARM Cortex M0 MCU. The

MCU is programmed to record range measurements and transmit them to a nearby in-
ternet connected gateway using LoRaWAN networking technology, discussed below.

The power consumption of the sensor averages 2 mA at 3.3 V, peaking at ~ 50 mA
when collecting measurements, making it suitable for long-term battery-powered field
operation. Between measurements, the MCU and radio are set to a low power sleep mode
with the power to the ultrasonic sensor switched off using the in-built transistor switch
of the Heltec development board; current consumption is ~ 20 pA when in sleep mode.
This allows for long-term operation with a modest battery capacity. The sensor uses a
lithium ion polymer (LiPo) 400 mAh single cell battery. To satisfy design criterion 3,

a UV resistant 0.6 W solar panel is integrated to charge the battery, allowing for indef-
inite operation. A custom solar panel mount was designed and 3D printed in resilient
ABS plastic (Figure [1). The sensor’s power consumption is discussed in more detail in
Section

For ease of assembly and to securely accommodate the development board and bat-
tery, a custom breakout printed circuit board (PCB) was designed and fabricated with
headers for the development board to be mounted to, and screw terminals for the ultra-
sonic sensor and solar panel wiring.

A common constraint in the deployment of sensor networks is a reliance on exist-
ing infrastructure such as power and networking. By designing a sensor network that makes
use of ultra-low power sensing, solar energy harvesting and wireless networking technolo-
gies, we have alleviated these requirements, thereby greatly expanding the potential de-
ployment locations for these sensors and meeting design criterion 4. As street flooding
occurs in myriad and distributed urban locations, this flexibility is critical for urban flood
detection.

The bill of materials for the sensor, excluding mounting hardware costs, is listed
in Table[ll At the time of writing (September 2023), the total cost of the sensor parts
was <$200 USD, allowing the sensors to meet design criterion 5. The build process for
the sensor is included on the project’s public Github page (FloodNet| |20224).

3.2 Sensor Deployment

The FloodNet sensor network was designed to monitor and collect data from var-
ious urban flood scenarios, and is indifferent to the cause of the flooding or water level
change. For example, the sensors can measure the profiles of floods caused by stormwa-
ter runoff, high tides, storm surge, water infrastructure failures, or compound events, and
are able to measure water depths over ground-level or water bodies, as long as the sen-
sor is placed above and at a 90° angle to the surface to be monitored. Nonetheless, sen-
sor deployment locations have a few key requirements: (1) mounting infrastructure (e.g.,
sign post, pole, wall, overhang, etc.) located directly above the surface to be monitored;
(2) a LoRaWAN gateway within range for ingestion of the transmitted data; and (3) sun-
light exposure to recharge the sensor’s battery. This section describes how these require-
ments inform the sensor installation process. Note that we plan for new versions of the
FloodNet sensor to transmit data over a cellular network (described in Section , which
would eliminate the need for a nearby LoRaWAN gateway.

U-channel posts, used to mount street signs, are some of the most abundant pieces
of street hardware in NYC (Figure . The NYC Department of Transportation (DOT)
granted FloodNet permission to mount sensors on these sign posts. The posts are typ-



Table 1. Bill of materials (BOM) for prototype sensor unit including cost in USD (at time of

writing)
Item Cost (USD)
Ultrasonic sensor $99.95
Mounting hardware $22.96
Heltec AB02 dev. board $14.40
Antenna $12.85
Breakout components $11.44
Solar panel 0.6W $9.00
LiPo battery - 400 mAh  $6.95
Solar mount $6.00
Custom breakout board  $0.50
Cable glands $0.45
Total $184.50

ically >3 m tall, providing a mounting height out of reach of passersby, and include 5 cm
spaced mounting holes running vertically up the U-channel. FloodNet sensors must be
mounted such that the ultrasonic beam is transmitted perpendicular to the ground sur-
face. This configuration is important because ultrasonic pulses transmitted at an angle
greater than 5° from vertical may not be returned to the sensor following reflection.

While plentiful, U-channel sign posts present some sensor installation limitations.
First, sign posts are typically located on the sidewalk (i.e., not the roadway), and there-
fore may not be located directly above the lowest elevation in an area of interest (i.e.,
the location most likely to flood first). As such, in many locations, sensors are unable
to measure flooding before the water depth exceeds the street curb height (usually ~15 cm
in NYC); this offset is noted in the metadata for each sensor, to aid the usability and
interpretation of measured flood data. U-channel posts with vegetation beneath pose an-
other challenge, as the shifting vegetation can produce variance in sensor measurements
during non-flooded conditions. U-channel posts can also be susceptible to damage (i.e.,
being pushed off-vertical) or removal; these changes can be detected in real-time sensor
readings and must be monitored as part of ongoing operation and maintenance. Despite
the limitations of U-channel sign posts, their plenitude in NYC make them great can-
didates for sensor mounting. In situations where U-channel posts are unusable or un-
available, sensors can also be mounted on other types of street infrastructure, such as
street lights or utility poles, using modified mounting hardware.

All installed sensors are accompanied by signage that provides information about
the FloodNet project, the type of data collected by the sensor and where to access it,
and an explanation that no identifying information is collected by the sensor (Figure [1)).
Sensor maintenance occurs on a regular and ad hoc basis. Regular visits to visually in-
spect functioning sensors currently occur yearly; the frequency may change as we expand
the network and learn more about specific maintenance needs for the hardware. The health
of each sensor is monitored remotely using its battery charge, data packet upload suc-
cess ratio, frequency of non-returned distance measurements, and ratio of noise to valid
distance measurements as metrics. Poorly functioning sensors are visited on an ad hoc
basis and replaced with new functioning sensors.



3.3 Data Collection

For each data point collected by the sensor, seven distance measurements are recorded
at 150 ms intervals, based on the time recorded between sending and receiving the ul-
trasound pulse. A median of these seven measurements is taken as a means of internal
filtering, to exclude any erroneously small or large range measurements that could be
reflections from smaller surfaces, such as the base of a light pole, and ensure that rang-
ing is to the largest surface below the sensor, such as the street, sidewalk, or floodwa-
ter.

The sensor also includes an internal temperature sensor that it uses to correct dis-
tance measurements for the temperature-dependent speed of the ultrasound pulse through
air (i.e., speed of sound increases with an increase in air temperature). Of note is that
this temperature compensation can over-correct if, for example, the sensor is exposed
to direct sunlight, causing it to absorb heat and measure warmer temperatures than am-
bient air. In this case, the sensor assumes that the ultrasonic pulse travels faster and for
a longer distance than it actually does and will record an exaggerated distance to the
ground (this phenomenon is further described in Section .

After determining the median distance value, this measurement is transmitted to
a nearby internet-connected gateway using LoRaWAN networking technology, described
in the next section.

3.4 Networking and Data Transmission

Every sensor using LoRaWAN for networking must be within range of an internet-
enabled gateway for data transmission and ingestion. FloodNet team members install
these LoRaWAN gateways in flood prone areas to receive sensor data payloads; gateways
can receive data from any sensors installed within a =2 km radius. The internet-connected
gateways forward these small (~28 byte) data payloads to our LoRaWAN network provider,
The Things Network, which packages the data and delivers them via the MQ Teleme-
try Transport (MQTT) lightweight publish/subscribe messaging protocol to the project
servers. The gateways themselves can be mounted inside or outside, but their 1 m an-
tennas are mounted outside as high as possible for optimum coverage. Typically, gate-
ways are mounted on the roofs of buildings on mounting points such as railings or ex-
isting vertical poles to ensure that the gateway and antenna are securely fastened.

Gateways require a continuous power source, such as an AC power outlet. The gate-
way typically used (i.e., MikroTik LtAP) measures 17 x 17 x 4 c¢m, weighs 500 g, and
consumes around 5 W of power (similar to a small phone charger). The gateway also re-
quires an internet connection to upload sensor payloads. A wired ethernet connection
is preferred, but a gateway that incorporates a cellular modem and SIM card with low
data rate plan can be used where ethernet connectivity is difficult to obtain. The data
throughput of the device is minimal, at around 5 MB/day, which would not exceed a data
plan bandwidth of 64 kbps. FloodNet has mounted gateways on the rooftops of local busi-
nesses, community organizations, academic institutions, public schools, and apartment
buildings.

Each sensor transmits its distance measurement payload (i.e., the median of seven
independent distance measurements, as described in Section via LoRaWAN to the
nearest gateway, which forwards it to The Things Network that then routes the data to
our project servers. To allow for an extensible platform for sensor data ingestion, stor-
age, analysis, visualization, and sharing, FloodNet uses a server setup that runs a set
of open source tools. More specifically, the FloodNet data pipeline is composed of a com-
bination of Docker containers including: (1) a load-balanced HTTP reverse proxy for the
efficient routing of secure web traffic from a set of subdomains to each service running
on the server; e.g., https://dataviz.floodnet.nyc (Traefik); (2) a layer for data ingestion,



routing, and processing (NodeRed); (3) a time-series database for data storage (InfluxDB);
(4) a dashboard platform for data visualization (Grafana); and (5) a public facing dash-
board built on the FieldKit platform at https://dataviz.floodnet.nyc. The data pipeline

is illustrated in Figure 2]

Of note, and described further in Section [5.3] is that the logistics of operating a
system requiring internet-connected, continuously powered gateways for data transmis-
sion are challenging, and has led our team to decide to transition to the use of a cellu-
lar network for data transmission in subsequent versions of the FloodNet sensor.
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Figure 2. FloodNet data pipeline including deployed sensors, gateway, backend services, and
data dashboards.

3.5 Sensor Power Consumption

Figure [3| shows the sensor’s current consumption during all possible states of the
sensor operating in LoRaWAN Class A, the default LoRaWAN class in which the end
device (i.e., the sensor) always initiates the communication. The sensor’s data collection
and transmission periodicity is ~1 min; the total duration of each cycle varies by a few
milliseconds due to the varying receive windows after a transmission, allowing the op-
portunity for bi-directional communication. In Figure[3] (a), (b), (d), and (f) are wake
periods, and (c), (e), and (g) are sleep periods. The current consumption spike at the
beginning of period (a) is when the sensor awakens from a deep sleep state. During ev-
ery sensing period, seven measurements are taken from the ultrasonic range sensor, with
seven corresponding current consumption peaks observed during period (a) in Figure
After the measurements are collected, a median is applied to these seven measurements
and the result is transmitted in period (b). A short receive window (Rx1; period (d)),
follows the transmission period (Tx) and a sleep period (c¢). Next, a second receive win-
dow Rx2, period (f), is typically opened one second after Rx1. The sensor enters a low
power state between the receive windows to save power, period (e). The sleep period (g)
lasts until the next sensing state (a) occurs.

Table [2 details the average current consumption of different sensor states during
a single cycle illustrated in Figure [3] For one such sleep-wake cycle, the wake-time (i.e.,
the sum of periods (a), (b), (d), and (f)) was 2.7 s and sleep-time (i.e., the sum of pe-
riods (c), (e), and (g)) was ~60.5 s (i.e., the duty cycle was approximately 4.5%). The
average consumption of one sleep-wake cycle is ~ 708 pA. This average varies from cy-
cle to cycle but is within the range of 700-750 pA. Based on these observations, with a
fully charged 400 mAh battery with no additional power or means of charging, the es-
timated lifetime of the sensor can be up to 22 days and 17 hours. This headroom in power
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Figure 3. (A) Sensor current consumption in milliamperes (mA) during different operational
states. The total cycle is approximately 60 s; only the first 10 s is presented, the remainder of
the time the sensor is in sleep mode. (B) Battery charge-drain cycles for select sensors, over the

month of January 2021.

consumption can accommodate periods of reduced sunlight, prolonged cover on the so-
lar panel (e.g., snow), or a panel failure.

Battery operation and solar charging of the deployed sensors have been success-
ful thus far. The sensors utilize a 0.6 W solar panel, mounted at an angle of 45°. Fig-
ure [3| illustrates the battery levels of three sensors deployed in locations with different
cloud coverage, shade, and mounting conditions, which contribute to the differences in
their battery trends. The three sensors also displayed differences in average voltage lev-
els due to expected variations in lithium polymer battery condition. The sensor deployed
at 5th Avenue and Hoyt Street had the best power harvesting of the three sensors illus-
trated in Figure [3| due to less shade from buildings and trees. All three sensors had min-
imal battery charging from January 1 to 3, 2021, due to consistent heavy cloud cover.
Nonetheless, the sensor batteries were able to recharge in the following days as the cloud
cover reduced. In conditions of full sun exposure, a single day of sun is sufficient to charge
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Table 2. Typical duration and average current consumption of different sensor operational
states detailed in Figure[3] These values vary from cycle to cycle but on average are below 1 mA

average current consumption

Period Sensor State DurationAvg.

(ms) current
consump-

tion
(a) Sensing 2500 14.1 mA
(b) Up-link transmission (TX) 67 115 mA
(c) Sleep after TX until RX1 5000 22.4 pA
(d) Receive window 1 (RX1) 52 18.3 mA
(e) Sleep between RX1 and RX2 1000 18.5 uA
(f) Receive window 2 (RX2) 59 19.3 mA
() Sleep until next sensing cycle 54500 21.3 pA

the 400 mAh battery completely. However, the sensor deployed at 6th Avenue and Wa-
verly Place had less favorable power harvesting conditions, as observed by the slower up-
ward charging trend after the heavy cloud cover period. Nonetheless, given the head-
room provided through the battery size and low power consumption design, the sensors
were able to operate through adverse weather conditions and maintain a healthy bat-
tery voltage level.

4 Data Processing and Visualization
4.1 Flood Sensor Data Ingestion and Calibration

There are a number of data processing stages implemented to convert distance mea-
surements collected by the sensors to clean profiles of flood depth; this data processing
pipeline is illustrated in Figure [l First, any data point where the ultrasonic pulse did
not return to the sensor, which the sensor records as the maximum range value = 5000 mm,
is labeled as 'undefined’, which is the designation for a missing data point. The remain-
ing distance measurements collected at time ¢ (z;) are then converted to flood depth (D;);
this calculation occurs in NodeRed. To calculate Dy, the measured distance between the
sensor and the ground below must be known under stable and non-flooded conditions.

This value is determined through a dynamic calibration procedure that occurs at 5 am

daily, in which z; collected over the previous three nights (between 10 pm and 5 am; n ~1260)
are analyzed to determine the median value (znight—median). Daytime measurements are
excluded from the calibration because of their potential temperature related variance,

as discussed in Section If the standard deviation of z exceeds 5 mm (signifying ei-

ther a flood or large variance related to noisy or unstable conditions), the previous day’s
Znight—median calculation is used. To calculate Dy, the sensor’s distance measurement

at that time (z;) is subtracted from znight—median (Equation .

D; = Znight—median — 2t (1)

This dynamic calibration approach allows the project to adapt to seasonal varia-
tion in baseline zpignt—median readings or changes in sensor height, caused, for example,
by a shift in U-channel post position.
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Data Collection
For each data point, seven distance (z;) measurements are recorded at 150 ms
intervals; the median is selected and transmitted

v

STAGE 0
a) Distance (z;) measurements >5000mm set to ‘undefined’
b) Distance (z) measurements converted to depth (D, (Eq 1)

2

STAGE 1

Depth (D;) measurements <10mm assigned value of zero
2

STAGE 2

Measurements with a gradient between two consecutive data points >254
mm/min set to ‘undefined’

2
STAGE 3
Detected blips and boxes set to ‘undefined’ using, sequentially (Egs 2 and 3):
a) Blip filter
b) Box filter
c) Blip filter

Figure 4. Sequential stages used to collect and filter flood sensor data. Data processing
during data collection occurs on the sensor, whereas filter stages 0 to 3 occur on the FloodNet

servers in NodeRed.

4.2 Flood Depth Data Processing

After converting distance measurements to depths, the sensor data are processed
through a series of filter stages to filter anomalous data related to: (1) low-level mea-
surement noise within our acceptable range of error, (2) the impact of direct sunlight on
temperature compensation, and (3) objects located below the sensor, which is a type of
noise more likely to be experienced by water level sensors monitoring flooding on streets
and sidewalks than those installed over water bodies, making data filtering critically im-
portant for the FloodNet project. In the following, a measured ‘event’ is defined as a se-
ries of one or more depth readings greater than 10 mm.

The first filter stage is designed to target the first two anomalies listed above. To
correct for low-level measurement noise, all reported depths less than 10 mm are assigned
a value of zero. This filter stage also works to filter measurements impacted by solar ir-
radiance incident on the sensor housing, causing the ultrasonic sensor’s internal temper-
ature sensor to read greater than ambient temperatures. When this occurs, the ultra-
sonic sensor’s calculation of distance is slightly increased as the speed of sound in air used
in the calculation is exaggerated. As such, measured 2z; > Znight—median, resulting in neg-
ative calculated depth values (i.e., measurements that dip below ground level). This phe-
nomenon has also been observed by others utilizing ultrasonic sensors for water level mon-
itoring (Mousa et al., [2016). Assigning all depths less than 10 mm a value of zero cor-
rects for this anomaly. Regardless, the resulting measurement error caused by this ef-
fect is typically within the range of our target accuracy (i.e., 25 mm; see Section .

The second filter stage applies a gradient-based filter to target non-flood depth mea-
surements caused by objects located under the sensor. When people, animals, or large
objects — such as trash, bicycles, vehicles, etc. — pass beneath or are placed under a sen-
sor, there is an immediate increase in depth measured from ground surface to the height
of the object. These non-flood measurements can be distinguished from floods by their
profile, given that floods have a gradual onset (Figure ; this difference in profile allows
the use of a filter that assesses the change in depth values between two time-adjacent
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Figure 5. Examples of flood and non-flood event data recorded by FloodNet sensors. An

‘event’ is defined as a series of one or more depth readings greater than 10 mm.

depth measurements (Adepth/Atime) on a rolling basis. The upper threshold for allow-
able change in depth over time was set at 254 mm per minute, which is a rate six times
greater than the fastest rate of flood onset we have measured thus far in NYC (i.e., dur-
ing Hurricane Ida). Any data point that exceeds the allowable Adepth/Atime thresh-
old is labeled as ‘undefined’ and is not included in the data visualization or alerting plat-
forms. Of note, however, is that this filter stage can miss non-flood events when a sen-
sor is experiencing weak network connectivity and there are longer periods of time be-
tween adjacent depth measurements, reducing the chance that the gradient threshold is
exceeded.

To address non-flood data points that are not captured by the gradient filter, we
characterized three primary types of noise events that appear in the sensor data - (1)
blips, (2) boxes, and (3) pulse chains (described below) - and designed a series of real-
time filters to target them. This third filter stage applies three filters in the following
order: a blip filter, followed by a box filter, followed by another blip filter to clean non-
flood data points that the box filter can leave behind. Each filter is described below.

Blips occur when sensor readings increase for a single measurement then return to
the original (or similar) value at the next time point. These single, anomalous measure-
ments are likely caused by a person, vehicle, or object temporarily located beneath the
sensor in the moment a measurement is collected. For sensors that are consistently up-
loading data (i.e., collecting and transmitting data every az 1 min), these readings can
be confidently filtered from the dataset because they are clearly transient. Blip events
are characterized by three consecutive readings with values of D1=D, Do=D+AD, and
D3 =D + 0.1AD, where D is any depth measurement > 0, and AD is a change in depth
greater than 2 mm (i.e., Do-D; > 2 mm).

To recognize this condition, a blip metric for depth measurement D5 is calculated
following Equation 2] To apply the filter in real-time, any depth measurement that is
at least 2 mm greater than the previous measurement is held in memory and not released
to the database or visualization platform until the next measurement (Ds) arrives, to
assess whether the depth measurement is a blip. If the blip metric is less than 0.1, point
D> is characterized as a blip and is set to ‘undefined’, otherwise, the measurement re-
mains unmodified.

Under certain conditions, a low frequency of available data points caused by poor
network connectivity could cause a flood event to only be measured in a single data point,
mimicking the characteristics of a blip. To reduce the risk of filtering out flood events
with few data points, if blips are detected in instances where D; and D3 span more than
6 minutes, the filter will query our weather database for reports of precipitation from
any rain gauge located in NYC, and will only filter if there has been no reported pre-
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cipitation in the past hour. Incorporation of tide data to check the possibility of coastal
floods is still under development.

Dy — Dy

Blszetmc(Dg) = |ﬁ
2 — L

| (2)
Boxes occur when sensor readings increase immediately and then remain at a con-
stant (or near constant) value for a sustained period of time. This can happen when a
static object (e.g., parked vehicle, garbage, etc.) is placed beneath the sensor. The box
filter was designed to detect a sharp increase in depth measurement, followed by one or
more measurements that remain within 10% of the initial increase in depth. Concretely,
given a sequence of depth values of length IV, box events are characterized as measure-
ments where D=0, Do=AD, and D,=Ds + 0.1AD for each sequential measurement
n in [3, N], until some measurement Dy deviates from the original increase in height
(AD) by more than 10%. To recognize this condition, a box metric for measurement D,,
is calculated following Equation |3} with values less than 0.1 indicating that D, is part
of a box. In real-time application, if the conditions of D; and Dy are met, then Ds is
held in memory until the following point Dj is received. If D3 and subsequent depth mea-
surements (until Dy) meet the stated condition of a box, then Dy through Dy will be
set to ‘undefined’. To prevent false characterization of floods as boxes, such as mistak-
enly filtering out the top of a flood given that standing water may have the appearance
of a plateau in the flood profile, we restrict the box filter to only filtering non-flood events
that start at a depth of zero (i.e., D; = 0). In cases when poor network connectivity causes
sparse data points, the box filter will follow the logic of the blip filter and will only con-
tinue to filter points if there was no precipitation within the past hour of a measured data
point.

Dn_DQ

BoxMetric(D,,) = | 5
2

| (3)

Pulse chains are characterized as a noisy series of blips and boxes (and blips on top
of boxes) that cannot be easily categorized into the other two categories. These anoma-
lous measurements are more challenging to filter and are not addressed by the filters ex-
plicitly, but can be captured partially by a combination of both the blip and box filters.
Thus, some pulse chains may remain after the application of the three filter stages. On-
going research is being conducted to optimize data analysis strategies to recognize and
filter out this measurement noise.

4.3 Data Visualization and Alerting

Raw data and filtered flood depth measurements are stored in a database that is
optimized for large-scale, time-series data ingestion and retrieval. Currently, the Flood-
Net project utilizes two real-time data visualization platforms that retrieve data from
the database: a Grafana-based platform that the FloodNet team uses internally, and a
public-facing dashboard openly available on the web (https://dataviz.floodnet.nyc)). The
design of the public-facing dashboard incorporated feedback collected from city agency
personnel and community residents to ensure data visualization is useful and meaning-
ful to both stakeholder groups.

Following feedback from stakeholders, the data visualization platforms enable users
to view sensor data alongside other sources of information that contextualize how flood
data were collected and provide important touchpoints for understanding the impacts
of flooding. For example, users can learn about the infrastructure on which a sensor is
mounted, when it was installed, and whether it collects measurements over a sidewalk,
road, or waterway. Additionally, tide gauge and precipitation data are provided to con-
textualize how environmental factors impact street-level flooding. We are conducting on-
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going research to learn how to best incorporate qualitative documentation of flood events
(such as photos, videos, and written accounts) into our visualization platforms. A core
tenet of the FloodNet project is open access to collected data. To facilitate this, a pub-
lic facing APT is under development, with an accompanying data download portal.

Flood sensor data present several opportunities for real-world application. One key
application for the data is a real-time flood alerting system, triggered when measured
flood depths reach a specified depth threshold. This alerting system has been identified
as a critical feature by some of our stakeholders, including both community members and
municipal employees involved in emergency management and response. During pilot test-
ing of the alerting system during summer 2021, flood alerts were sent via email or mes-
saging app to registered users when measured flood depths exceeded 7.6 cm. During Hur-
ricane Ida (1 Sept 2021), the FloodNet system alerted NYC Emergency Management
of flooding recorded by the sensors installed in the Gowanus neighborhood in Brooklyn
50 minutes before they received other notifications of the event.

5 Results and Discussion

FloodNet sensor installation and data collection are ongoing. To date, a total of
87 FloodNet sensors have been installed in flood-prone areas across the five boroughs
of NYC (Figure @ Sensor installations have been staggered, with some sensors installed
for years and others installed more recently. We plan to expand the network across NYC
in the coming years. Nonetheless, analysis of sensor data from flood events and static
baseline measurements collected thus far provides insight about the functionality of ul-
trasonic sensors and the particularities of flood monitoring in general.

5.1 Sources of Sensor Measurement Error

The main sources of potential error in the depth measurements made by the sen-
sor are the noise floor of the ultrasonic range finder, exposure to direct sunlight, shifts
in ambient temperature, and the mount angle of the sensor. The noise floor of the ul-
trasonic range finder is a function of the manufacturer stated accuracy of 1% or better
(i.e., £15 mm at a typical mounting height of 3 m) and measurement deviations caused
by variations in surface profile beneath the sensor. To assess the extent of the noise floor
error, data collected by 46 sensors from February 14 to 21, 2024 between the times of
10 pm and 5 am were assessed for variability in distance readings; other sensors were not
included due to non-flood measurements (e.g., blips and boxes described in Section
that would have confounded analysis. Night time measurements were used to avoid the
influence of direct sunlight on measurements. Of 98,013 data points where the water depth
measurements should have been 0 mm, the minimum measurement was -14 mm and the
maximum measurement was 19 mm, resulting in a error range of 33 mm (Table , which
is within our accuracy tolerance of £25 mm.

The largest contributor of measurement error was observed when direct sunlight
was incident on the ultrasonic range finder. To isolate the effects of direct sunlight and
calculate its impact, data collected by the same sensors and time period as above, but
during the hours of 8 am and 5 pm, were assessed. Although a maximum error of 73 mm
was found, this occurred only during times of peak sunlight intensity. Further, the mean
(-12.2410.7 mm) and median (-9 mm) measurements were within our allowable accu-
racy tolerance, and fewer than 12% of daytime measurements exceeded the allowable er-
ror.

As previously mentioned, there is a known effect of ambient weather conditions on
ultrasonic distance measurements (Mousa et al., [2016|). To evaluate this effect on Flood-
Net sensor readings, daily mean distances to the ground were calculated for data collected
by a FloodNet sensor (located at the intersection of Hoyt Street and 5th Street in Brook-
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Figure 6. FloodNet’s public facing data dashboard. The map view of the dashboard, shown
here, includes the locations of the 87 sensors installed across the five boroughs of NYC as of
February 2024. Each circle indicates a sensor location and is color coded corresponding to the
real-time measured flood depth; the depth value in inches is indicated by the number located in

the center of each symbol.

lyn) between 10 pm and 5 am each day, over the course of a year. Night time values were
evaluated alone to assess seasonal-dependence of sensor readings due to ambient tem-
perature, without the confounding impact of direct sunlight on the sensor during the day.
To understand baseline (i.e., non-flood) conditions, known flood and snow events were
excluded from the dataset, as were absolute values greater than two standard deviations
from the mean.

Despite no change in the physical height of the sensor as installed, there was a sta-
tistically significant shift in the baseline distance measurements made by the sensor over
the course of a year (Figure E[), with greatest distances measured in January and small-
est measured in August. Colder ambient temperatures in the winter decrease the veloc-
ity of ultrasonic pulses, resulting in longer times of return and exaggerated distance mea-
surement if the temperature was not fully accounted for in the distance calculation. Con-
versely, warmer temperatures in summer would lead to calculation of shorter distances
due to faster velocity and shorter time of return of the ultrasonic pulse. As such, it is
possible that the internal temperature sensor housed within the casing of the ultrasonic
sensor erroneously detected lower than ambient temperatures during the winter and higher
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Table 3. Sources of potential error in sensor measurements and summary statistics of their
contribution to potential measurement inaccuracy. For all data points evaluated, the water depth
measurement should have been 0 mm (i.e., no flood was occurring). Data used for evaluation of
error related to ultrasonic noise floor and ambient temperature were limited to measurements
collected between 10 pm and 5 am; data used to assess the impact of direct sunlight exposure

were limited to those collected between 8 am and 5 pm.

Source of error Ultrasonic noise floor Direct sunlight Ambient temperature Mount angle

Number of sensors evaluated 46 46 1 10

Sample duration (days) 7 7 365 -

Number sensor measurements assessed (n) 98013 120739 525543 6
Mean depth measurement (mm) -0.4 -12.2 0.7 5.7

Standard deviation (mm) 2.6 10.7 4.2 4.3

Median depth measurement (mm) 0 -9.0 1.7 5.7

Minimum depth (mm) -14.0 -73.0 -5.1 0

Maximum depth (mm) 19.0 0 6.1 11.5

Error range = maximum-minimum (mm) 33.0 73.0 11.2 11.5
% of measurements within error tolerance 100% 83.7% 100% 100%

than ambient during the summer. Nonetheless, the magnitude of difference between great-
est and smallest distance measurement was only 11.2 mm, which is within the allowable
error of the sensor. Additionally, the dynamic calibration procedure described in Sec-

tion [£:I] accounts and corrects for this temperature-dependent phenomena.
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Figure 7. Difference in daily nighttime mean distance measurements (under non-flooded con-
ditions from 10 pm to 5 am) from the annual mean for a flood sensor located at Hoyt Street and
5th Avenue (Brooklyn) over 12 months from 2020 to 2021. Temperature data represent ambient

conditions and were sourced from a nearby New York State Mesonet managed weather station at

the Brooklyn Navy Yard (ID: bknyrd), which is located ~ 3 km away from the sensor.

The ideal mounting angle between the ground and the ultrasonic range finder is
90°. If the mounting angle deviates from 90° by an angle of § then measured flood depths
will be exaggerated, given that the pathlength of the ultrasonic pulse would be along the
hypotenuse, with a distance equal to the the height of the sensor multiplied by cos™(f).
Ten different ultrasonic range finders were evaluated in the laboratory to assess the max-
imum 6 at which ultrasonic pulses reflected off the ground were still able to return to
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the sensor, which was found to be 5°. At angles greater than this, the majority of re-

flected ultrasonic pulses are not received, resulting in an invalid measurement. When mount-
ing sensors, a two-axis spirit level is used to ensure the ultrasonic range finder is at 90°

to the surface beneath, reducing the likelihood of this error. If, however, the mounting

angle deviates from 90° by the 5° maximum 6, then the maximum error in flood depth
measurement would be 11.5 mm at a typical sensor mount height of 3 m (Table|3)), which

is within our accuracy tolerance of £25 mm.

When assessing all data points collected by the sensors between February 14 and
21, 2024, significant majority (95.8%) of the sensor measurements (n= 329,124) were within
our allowable range of error.

5.2 Validation of Sensor Measurements

Sensor measurements were validated in three ways: (1) in-laboratory testing be-
fore deployment; (2) comparison with data from tide gauges operated by the National
Oceanographic and Atmospheric Administration (NOAA); and (3) comparison with man-
ually collected flood depth measurements during a street-level, tidal flood event.

The flood sensor assembly process follows a detailed quality assurance (QA) pro-
cedure (FloodNet, [2022a)). After the assembly, and before deployment, sensors undergo
a data validation test to ensure accurate measurements. During this in-laboratory qual-
ity control (QC) testing, each sensor is tested for accuracy at known mounting heights
that are similar to actual deployment scenarios. These heights are measured with a stan-
dard scale, and the mounts are aligned at a perpendicular angle to the ground surface
using a spirit level. The duration of this test is one hour, and a median of seven mea-
surements are collected every minute. The observed sensor measurements at all mount-
ing heights must be within h;+nj0weq to pass the QC test, where h; is the known mount-
ing height and ngjjoweq 18 the acceptable noise floor, which is the ultrasonic range finder’s
manufacturer stated 1% of the measured distance. All of the FloodNet sensors constructed
thus far have met this QC criteria.

To test the ability of FloodNet sensors to detect water level changes under real-
world conditions, sensors were mounted over tidally-influenced water bodies (Gowanus
Canal in Brooklyn and the Jamaica Bay estuary in Queens). Changes in water level due
to the daily tidal cycle measured by the FloodNet sensors were compared with measure-
ments collected by nearby tide gauges operated by NOAA, and found to be similar with
similar periodicity (Figure .

Finally, the FloodNet sensors demonstrated accuracy in measuring water depths
during an actual street-level flood event. A validation experiment was conducted dur-
ing a high tide flood event in Hamilton Beach, Queens, on July 23, 2021. A standard mea-
suring scale was installed on the same pole used to mount a FloodNet sensor, and flood
depth measurements were manually recorded at regular time intervals during the flood,
concurrent with flood sensor measurements. The FloodNet sensor readings were in agree-
ment with the manual flood depth measurements, with an accuracy within a few mil-
limeters (Figure [8).

5.3 Network and Data Acquisition Performance

FloodNet sensors collect distance data every minute and transmit these data pay-
loads to our servers via LoRaWAN. However, one factor affecting data transmission (also
referred to as sensor uptime) is the signal strength between the sensor transmitting the
data and the gateway receiving it. Low signal strength caused, for example, by a gate-
way being out of range, non-ideal topography between the sensor and gateway, or ob-
jects obstructing signal transmission (e.g., buildings, trees), can result in the loss of data
payloads. The sensor design described herein does not store data on the device - a de-
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Figure 8. (A) Comparison of water level data collected by a FloodNet sensor installed above

the Gowanus Canal in Brooklyn (black line), which is tidally influenced, with the tide level mea-
sured by a NOAA tide gauge located at the Battery, NY (NOAA station ID: 8518750; dashed
blue line). The FloodNet sensor measurements are very similar to those from the NOAA tide
gauge with a slight temporal delay due to being installed in different locations in New York
Harbor. (B) FloodNet sensor measurements (black line) collected during a high tide flood in
Hamilton Beach, Queens on July 23, 2021, compared with measurements collected intermittently
by manually reading the depth value off of a standard ruler (blue data points and line).

cision made to keep the sensor small and low-cost - and data can be lost if not received
by the gateway.

Much effort has been made in installing sensors and gateways in locations that en-
sure good signal strength. Nonetheless, FloodNet sensors deployed thus far have had trans-
mission efficiencies of less than 100% (Figure @, which is typical for LoRaWAN networks.
For example, in analyzing the transmission efficiencies of 21 sensors that were installed
and operating during the full six month period between October 2022 and April 2023,
eight had transmission efficiencies that were greater than 75%, seven were between 50
and 75%, and the remaining six were between 35 and 46%. Given that the sensors col-
lect and transmit data every minute, a transmission efficiency of greater than 50% is rel-

atively good, and means that, on average, data packets sent by a sensor were received
at a frequency of at least every other minute.
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Figure 9. Data transmission efficiencies of a subset of FloodNet sensors, showing percent

of payload uploads per day, where 100% equals 60 successful uploads/hour over 24 hours. The
percentage provided on the left hand side of the figure is the average daily transmission efficiency
across all days in the period between October 2022 to April 2023. The 21 sensors included here
are a subset of the total number of sensors installed thus far, and were selected because they were
installed and operated during the full duration of the six month period from October 2022 to
April 2023.

Poor sensor uptime can be caused by a variety of factors. First, if a sensor is ob-
served to have consistently low upload rates, it is often caused by poor or inconsistent
gateway coverage. This can be a function of pure distance between the sensor and the
gateway - as seen for sensor 19 (Figure E[), which was located 1.8 km from the nearest
gateway - or can be due to seasonal or environmental effects that could impede the sig-
nal, such as increased tree foliage in summer or high voltage electrical or heavy metal
infrastructure located nearby. Sensor 18, for example, was mounted next to the under-
pass of a steel railway bridge, which impeded signal transmission.

Second, downtime can manifest in an otherwise well-performing sensor as a sud-
den and complete loss of connectivity for a period of time, which can be caused by the
temporary malfunction of a gateway or sensor. A gateway malfunction can cause an out-
age across multiple sensors that rely on that gateway for connectivity. For example, in
February 2023, two gateway outages occurred, the first affecting sensors 8, 11, 12, and
14, and the second affecting sensors 9, 13, 16, and 18. During the first gateway outage,
sensor 8 initially had a total outage, but was able to regain connectivity, albeit weaker
in signal strength, with another gateway shortly after, and sensor 11 saw a drop in con-
nectivity, but never completely lost connectivity due to proximity to another, further gate-
way. Improved gateway connectivity was gained through deployment of two new gate-
ways in March 2023, first reconnecting sensors 8 and 12, and later reconnecting sensors
9, 11, 13, 14, 16, and 18. Additionally, vertical bands can be observed across all sensors
in January and February 2023 related to short term system-wide outages caused by server
infrastructure maintenance, when downtime was less than a day.

To reduce the loss of data during transmission over LoRaWAN, one could use a stronger
antenna on the sensor to improve signal strength and increase the packet success rate.
For the next iteration of the FloodNet sensor, however, we have decided to pivot to the
use of a cellular network for data transmission instead of LoRaWAN. In addition to im-
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proving the packet success rate, switching to a cellular network will alleviate other chal-
lenges associated with using LoRaWAN, including the need to identify and gain permis-
sion for gateway installation locations that have access to power, and gateway downtime
due to power outages or equipment malfunctions. We also plan to implement onboard
flash memory to store data on the sensor. In the event of a network disruption, the sen-
sor will re-transmit stored data once the disruption is resolved, minimizing the loss of
data packets.

5.4 Data Filter Performance

Between October 2020 and May 2023, a total of 6,641 events were recorded by the
sensors (Table |4)); each event is defined as a series of one or more depth readings greater
than 10 mm. Of these, 360 were manually identified as flood events, 7 as snow events
(i.e., snow accumulation during winter storms), and the remaining 6,274 as non-flood events.
The recording of non-flood events (described in Section resulted from the nature of
the sensors being located over active streets and sidewalks in NYC, and included blips,
boxes, pulse chains, and complex noise, the latter being a catch-all category for events
that did not fit into the other three categories. Most of the non-flood events (74%) were
identified as blips.

As described in Section we developed and implemented a series of automated
data processing stages to filter non-flood events from the depth data, thereby removing
false positive events from the data visualization and alerting platforms. As shown in Ta-
ble [l the use of all three filter stages described above resulted in an overall reduction
in reported non-flood events of 76%, whereas only 19% of the non-flood events were cap-
tured after the gradient filter stage (i.e., using only the first two filter stages). Blip events
were the most common non-flood events and the easiest to filter, with 92% of blips cor-
rectly classified. Boxes and pulse-chains occurred less frequently, but were more chal-
lenging to capture, as shown by the correct identification of 65% of boxes and 32% of
pulse chains. All flood and snow events remained unfiltered, indicating that the filters
did not result in false negative results.

There are some challenges to automatically distinguishing flood events from non-
flood events, including having sparse data points at times for some sensors. More specif-
ically, when data are not received from the sensor regularly (e.g., every minute), it is dif-
ficult to distinguish a possible flood from a non-flood event. For example, with frequent
data points, large gradients of flood depth per time can be readily identified as unlikely
coming from a flood event. However if the data points are separated by long or irreg-
ular time intervals, a large increase in depth that is physically unlikely at a 1 minute res-
olution could be possible at a 5 or 10 minute resolution because the large instantaneous
gradient is now spread over a longer period of time. In an extreme case, if only one mea-
surement is received over the duration of a flood, it could appear as just a blip, which
is why blip and box filters are both limited by the length of the time window they’re al-
lowed to operate on; this challenge will be alleviated with engineering improvements to
increase data transmission.

Additionally, there are events that do not match the aforementioned non-flood or
flood event patterns. For example, some non-flood events have two points that meet nei-
ther the characteristics of a box nor a blip, some boxes don’t start at zero and are not
identified because the box filter requires the first point to have a depth of zero, and some-
times the tops of boxes have a large variance or have boxes or noise on top of boxes, both
of which would bypass the box filter.

Our goal is to release data to stakeholders as close to real-time as possible, ideally
within 5-10 minutes of the start of a flood. Therefore, frequent data collection (~ 1 minute
interval) is needed for the filters to be able to rapidly recognize flood events. Addition-
ally, we are conducting ongoing research to improve the data filters’ ability to distinguish
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Table 4. Counts of flood, snow, and non-flood events that were recorded by FloodNet sensors
between October 2020 and May 2023, in which an event is defined as a series of one or more
depth readings greater than 10 mm. Total event numbers presented for the unfiltered data were
manually counted. The numbers of non-flood events identified after the gradient filter stage and
after application of all three filter stages are presented; the percentages provided are calculated
as the number of events identified by the filters divided by the number of events identified in the
unfiltered data

Unfiltered Data After Gradient Filter (Stage 2) After All Filter Stages (Stage 3)
Event T Number Events Number Non-flood Percent of Total Number Non-flood Percent of Total
ven e
P Identified Manually Events Identified from Unfiltered Data Events Identified from Unfiltered Data
Flood 360 0 0% 0 0%
Snow 7 0 0% 0 0%
Blip 4641 990 21% 4298 93%
Box 812 235 29% 528 65%
Pulse Chain 597 58 10% 193 32%
Complex Noise 224 4 2% 19 8%
Total Non-Flood Events 6634 1287 19% 5038 76%

floods from non-flood events. One avenue being explored is training machine learning
models to identify the patterns of flood event data, with a goal of reducing the number

of false positive floods reported for non-flood events, which is important for a reliable
public flood alert system. Additionally this will help in post-hoc flood labeling and bound-
ary regression allowing computation of flood event statistics.

5.5 Community Engagement with Flood Sensor Data

Community engagement is an important component of the FloodNet project, given
our goal to meaningfully collect and share data that can contribute to flood risk miti-
gation and community flood resilience. FloodNet’s ongoing outreach and collaboration
with local community members has assisted with project design and implementation. In
addition, though community engagement activities we have learned that flood sensor data
have the potential to support community residents’ decision making when faced with chronic
floods; for example, a sensor placed on an important roadway that floods semi-monthly
has helped residents know if it is passable in real time. In addition, the sensor data of-
fer opportunities to assist in increasing residents’ understanding of how flooding impacts
their neighborhoods. For example, community members who participated in a focus group
on FloodNet data and public engagement noted that sharing summary flood data with
their neighbors could be a good way to communicate whether they live in a flood zone,
in what time of year floods are most likely to occur, and what resources are available to
prepare for flood events. Through presentations, community meetings, educational work-
shops, community walk-throughs, and community-collected feedback on flood sensor place-
ment, we have also heard a desire among community members to use flood sensor data
to validate community experiences of flooding in the eyes of elected officials and other
people in power. This can serve to support action plans and advocacy that connect flood-
ing to other relevant community issues in flood-prone areas. Given the various poten-
tial uses of flood data, a goal for future research is to assess how community residents
actually use the data when it is available.

5.6 Flood Sensor Data Examples: Hurricane Ida and Tidal Flooding

Even with ongoing upgrades to the sensor design, network performance, and data
analysis pipeline, the FloodNet sensors deployed thus far have been able to collect a rich
dataset, capturing the profiles of pluvial and tidal floods in NYC neighborhoods. The
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arrival of the remnants of Hurricane Ida in NYC on September 1, 2021 was a landmark
event, with record rainfall (up to 79 mm/h recorded in Central Park) resulting in un-
precedented flooding across NYC. All three FloodNet sensors deployed at the time in

the Gowanus neighborhood in Brooklyn measured flood profiles during the storm, with
the most extreme flooding occurring at the intersection of Carroll Street and 4th Av-

enue (Figure . A peak flood depth of 890 mm above the sidewalk was recorded (wa-

ter depths in the roadway were deeper), as well as a rapid rate of onset: up to 91 mm/min
for the first 5 minutes of the flood. See Silverman et al. (Silverman et al., |2022) for a
description of flood data collected by the same sensor during Tropical Storm Henri on
August 21, 2021.

Flood events have been measured more frequently by sensors installed in coastal
areas susceptible to regular tidal flooding. The northernmost block of Beach 84th Street
on the Rockaway peninsula in Queens is one such example (Figure [10). In the 17 months
between December 2021, when the sensor was installed, and April 2023, the sensor lo-
cated on this block measured 121 distinct flood events, each between 29 and 560 mm in
depth, during relatively high, high-tide events, which occur on a semi-monthly basis, typ-
ically coinciding with the full moon or new moon. For example, in September 2022, the
FloodNet sensor recorded 13 distinct flood events on 7 consecutive days, following the
approximately 12-hour period of the tidal cycle. Other FloodNet sensors located in ad-
ditional coastal areas have measured a similar degree of flooding.

6 Conclusions and Future Work

The design of the FloodNet sensor allows accurate measurement of street-level floods
as shallow as 10 mm, at a frequency of one measurement per minute under optimal con-
ditions. The associated sensor network transmits measured data to our servers and the
FloodNet data analysis pipeline, which enables flood data visualization and provision
of alerts to users in near real-time.

Given the success of FloodNet sensors in monitoring floods thus far, and the po-
tential utility of flood sensor data (Silverman et al., 2022), we plan to expand the sen-
sor network in NYC. To accomplish the expansion, ongoing research is being conducted
to iterate the sensor design to make it more manufacturable for scale-up, to improve data
transmission rates through the use of a cellular network, and to update the data anal-
ysis pipeline to improve the detection and logging of flood events. All sensor design files
are located on the FloodNet Github page (FloodNet| |2022b)), which is updated as new
designs are implemented.

A variety of stakeholders, including NYC residents, are being consulted as we it-
erate the design of the FloodNet web-based data dashboard and other data sharing tools,
such as printable data sharing reports, to improve the meaningful sharing and commu-
nication of collected flood data. Additionally, given the thousands of locations that are
at risk of flooding in NYC (New York City Stormwater Resiliency Plan), 2021)), it is un-
likely that a flood sensor network will be distributed enough to monitor every one. As
such - and given the relevance of the data to municipalities for uses such as emergency
management, urban planning, decision making for capital improvement projects and other
resource allocation - an additional line of ongoing research is to create a risk and equity
based framework to help prioritize flood sensor deployment locations in a systematic and
equitable way. In addition, we have ongoing collaborations with hydrologists to assess
the ways in which flood sensor data can be incorporated to hydrologic and hydraulic mod-
els to improve flood prediction and risk assessment.

In conclusion, FloodNet sensors were specifically designed to overcome challenges
related to measuring floods in a distributed manner across a complex urban environment,
and have a demonstrated ability to collect street-level flood data, regardless of the flood
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typology (e.g., pluvial, fluvial, tidal, storm surge, infrastructure-related). While the Flood-
Net project is based in NYC, the sensor design is flexible for other locations and con-
texts, with an open-source design available for others who would like to build and de-

ploy flood sensors in their own communities.

Open Research

All sensor hardware designs and associated software are available on our publicly
accessible Github organization (FloodNet|, 2023b). Data used in the analyses presented
herein can be found on Zenodo (FloodNet| 2023a). Time series visualizations of all Flood-
Net sensor data can be found on our public facing data dashboard (FloodNet), [2023c]).
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Figure 10. Examples of flood data collected by FloodNet sensors: (A) Data collected by the
sensor located at the intersection of Carroll Street and 4th Avenue in Brooklyn during Hurricane
Ida (September 1, 2021). The black line represents the flood depth data (secondary y-axis); blue
bars represent rainfall intensity (primary y-axis; precipitation data was sourced from a rain gauge
at a New York State Mesonet managed weather station at the Brooklyn Navy Yard (ID: bknyrd)
located ~ 2.7 km from the sensor). The flood sensor is located over a sidewalk, therefore flood
depths were greater in the adjacent roadway. (B) Data collected by the sensor located on Beach
84th Street in Rockaway, Queens over the course of 18 months (December 2021- May 2023). The
Black line represents the flood depth data (secondary y-axis); the blue line (primary y-axis) rep-
resents the tide height above the mean higher high water (MHHW) level. Tide data are from
NOAA for the North Channel, NY tide station (NOAA station ID: 8517201). (C) Same data as
in Panel B, but zoomed in to a week period from September 5 to September 14, 2022, when high
tide flooding caused by the full moon on September 10 resulted in 13 consecutive flood events,

with floods occurring every 12 to 24 hours.
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