Consider a transform that acts on a function to extract the product series coefficient. For example if a function allows a series expansion f(x) = ^\infty (1 + a_k x^k) = ^\infty b_k x^k then we define the transform K of f to be K_x[f](s) = a_s likewise the inverse transform gives K_s^{-1}[a_s](x) = f(x) then by definition of the Pochhammer-q function we have K_x[{2}(-1,x)_{\infty}] = 1 \\ K_x[(q,q)_{\infty}] = -1 then certain functions with number theoretic potential can be defined by the inverse transform K_s^{-1}[\lambda(s)] \\ K_s^{-1}[\mu(s)] \\ K_s^{-1}[\phi(s)] \\ K_s^{-1}[\Omega(s)] \\ for functions λ(s),μ(s),.. the Liouville function, Moebius function, totient function etc. If we attempt to extract the coefficeints of a well known function, for example \exp(x) = (1+1x)(1+{2})(1-{3})(1+{8})(1-{5})(1+{72})\cdots we find that the coefficients of odd prime powers p are −1/p. We find that _x\left[{1-x}\right](s) = (s) which is the characteristic function of non-zero powers of 2, which comes from the interpretation of that number of ways to partition each number into powers of 2 is 1. We have b_7 = (a_1a_2a_4 + a_3a_4 + a_2a_5 + a_1a_6 + a_7) which is clearly a sum over the ways to make 7 from unique choices of k. Whereas terms like a_5 = b_5 - b_2 b_3 + b_1 b_2 b_2 - b_1 b_4 + b_1 b_1 b_3 - b_1 b_1 b_1 b_2 where the signs seem to correspond to the number of terms and repeats are now allowed. This gives b_n = \left(^n [k_1=n]a_{k_1}\right) + \left(^n^n [k_1+k_2=n]a_{k_1}a_{k_2}\right) + \cdots and then a_n = \left(^n [k_1=n]b_{k_1}\right) - \left(^n^n [k_1+k_2=n]g_{k_1 k_2}b_{k_1}b_{k_2}\right) + \cdots where the gkl correct for multiplicities.
Create a transform somewhat in analogy to the Mellin transform which to some extent extracts sequence coefficients. _s[f(x)](s) \approx \Gamma(s)\phi(-s) where f(x) = ^\infty {s!}\phi(s) x^s instead consider a transform ℐ[f(x)](s) such that [f(x)](s) \approx \Gamma(s)\chi(-s) where (x)}{x} = ^\infty {s!}\chi(s) x^s and example, the function f(x) = x + x^2 has inverse as series f^{-1}(x) = x - x^2 + 2 x^3 - 5 x^4 + \cdots (x)}{x} = 1 - x + 2 x^2 - 5 x^3 + \cdots = ^\infty {s!} C_s x^s = ^\infty {s!} {(s+1)!} x^s then \chi(s) = {\Gamma(2+s)} then [x+x^2](s) ={\Gamma(2-s)} x^{-1}[[x+x^2](s)](x) = f^{-1}(x) RESULTS Then it would seem that [2x^2 - ](s) ={\Gamma(1-s)} [W(x)](s) =\Gamma(s)(-1)^s \\ [-W(-x)](s) =\Gamma(s) \\ \left[{1-x}\right](s) =\Gamma(s)\Gamma(1-s) \\ \left[-2x}{2x}\right](s) =\Gamma(s)\Gamma(2-s) \\ \left[\log\left({x}\right)\right](s) =\Gamma(s-1)\\ \left[W\left({x}\right)\right](s) =\Gamma(s-2)\\ \left[e^x-1\right](s) ={\Gamma(2-s)} \\ \left[\log(x)\right](s) =(-1)^{1-s} \Gamma(s-1) \\ \left[{e^x-1}\right](s) ={1-s} \\ \left[-x-W(-xe^{-x})\right](s) =\Gamma(s)\zeta(s) \\ Some more generalised ones [\log(x^k)](s) = \left(-{k}\right)^{1-s} \Gamma(s-1)\\ \left[W\left({x^k}\right)\right](s) =k^{-1-1/k+s}\Gamma(s-1-{k})\\ \left[W\left(x^k\right)\right](s) =(-k)^{-1+1/k+s}\Gamma(s-1+{k})\\ \left[-{x+W(-e^{-x}x)}\right](s) = {s}\\ \left[-2W(-}{2})\right](s) = s^2 \Gamma(s)\\ \left[{\log(k/x)}\right](s) = k \Gamma(1-s)\\ \left[{1 - W(ex/k)}\right](s) = k s \Gamma(1-s)\\ \left[-x^k W(}{A})\right](s) = -A x^{k s}\Gamma(s)\\ As described in a previous article on here: It would appear that for the function f(x)=x^m+x, m>1 we get a series g(x)=^\infty {n}}{(m-1)n+1} these then have a set of consistent, hypergeometric series explainable as g(x)=_{(m-1)}F_{(m-2)}\left(\left\{{m},{m},\cdots,{m}\right\};\left\{{m-1},\cdots,{m-1},{m-1}\right\};-}{(m-1)^{m-1}}\right)\cdot x then {x}=_{(m-1)}F_{(m-2)}\left(\left\{{m},{m},\cdots,{m}\right\};\left\{{m-1},\cdots,{m-1},{m-1}\right\};-}{(m-1)^{m-1}}\right) which would give [x+x^m](s) = _x[\;_{(m-1)}F_{(m-2)}\left(\left\{{m},{m},\cdots,{m}\right\};\left\{{m-1},\cdots,{m-1},{m-1}\right\};-}{(m-1)^{m-1}}\right) ](s) which gives [x+x^2](s) = {\Gamma(2-s)}\\ [x+x^3](s) = {2})\Gamma({2})}{2 \Gamma(2-s)} \\ [x+x^4](s) = {2}}\pi \Gamma(-4s/3)\Gamma(s/3)}{\Gamma(2/3-s/3)\Gamma(4/3-s/3)\Gamma(-s/3)} =?={3 \Gamma(2-s)} it then seems like {m-1}\right)\Gamma\left({m-1}\right)}{(m-1)\Gamma(2-s)} = _x[x+x^m](s) and more generally {m-1}}\Gamma\left(1-{m-1}\right)\Gamma\left({m-1}\right)}{(m-1)\Gamma(2-s)} = _x[x+a x^m](s) FURTHER SMALL POLYNOMIALS There are some other small polynomials that give integer sequences upon reversion. Consider x − x² − x³. ^{-1}_s[\Gamma(a+b s)](x) = (-1)^b(b+a)^b W(-{b+a}}x^{{b+a}}}{b+a})^b
ABSTRACT I introduce k-crossing paths and partitions and count the number of paths for each number of desired crossings k for systems with 11 points or less. I give some conjectures into the number of possible paths for certain numbers of crossings as a function of the number of points. INTRODUCTION A order n meandric partition is a set of the integers 1⋯n, such that a path from the south-west can weave through n points labeled 1⋯n without intersecting itself and finally heads east (examples are shown in Fig. 1). Counting the number of possible paths for n points is a tricky problem, and no recursion relation, generating function or explicit formula for the number of order n meandric partitions appears to have been found. This work is concerned with the number of paths that must intersect themselves exactly k times, where when k is 0, we have the meandric paths. It is possible to draw a line that deliberately crosses itself as many times as required, because of this we only consider a path to be k-crossing if k is the smallest number of crossings possible, that is a path that must cross itself k times (an example of a 3-crossing path over 9 points is given in Fig. 2). RESULTS Define ak(n) to be the number of configurations of n points where the path through them is forced to cross itself k times. For 0-crossings on n points we have the open meandric numbers, given in the OEIS as A005316 a_0(n) = 1, 1, 1, 2, 3, 8, 14, 42, 81, 262, 538, 1828, 3926, \cdots, \;\; n=0,1,\cdots this work has counted this for k > 0 by calculating all n! permutations of the n integers and checking to see the minimal number of crossings for each, we then have n =&0&1&2&3&4&5&6&7&8&9&10&11\cdots\\ a_0(n) =&1,& 1,& 1,& 2,& 3,& 8,& 14,& 42,& 81,& 262,& 538,& 1828,\cdots\\ a_1(n) =&0,&0,& 1,& 4,& 10,& 36,& 85,& 312,& 737,& 2760,& 6604, &25176,\cdots\\ a_2(n) =&0,&0,& 0,& 0,& 8,& 42,& 168,& 760,& 2418,& 10490,& 30842, &131676,\cdots\\ a_3(n) =&0,&0,& 0,& 0,& 2,& 16,& 164,& 944,& 4386,& 22240,& 83066, &398132,\cdots\\ a_4(n) =&0,&0,& 0,& 0,& 1,& 18,& 146,& 1076,& 6255,& 37250,& 168645, &908898,\cdots\\ a_5(n) =&0,&0,& 0,& 0,& 0,& 0,& 96,& 960,& 7388,& 51968,& 282122, &1711824, \cdots\\ a_6(n) =&0,&0,& 0,& 0,& 0,& 0,& 30,& 440,& 6472,& 55140,& 384065, &2642444,\cdots\\ a_7(n) =&0,&0,& 0,& 0,& 0,& 0,& 14,& 368,& 5176,& 53920,& 455944, &3575040,\cdots\\ a_8(n) =&0,&0,& 0,& 0,& 0,& 0,& 2,& 66,& 3542,& 45960,& 484058, &4336734,\cdots\\ a_9(n) =&0,&0,& 0,& 0,& 0,& 0,& 1,& 72,& 2011,& 32280,& 452504, &4661756,\cdots\\ a_{10}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 1172,& 25066,& 396493, &4709856,\cdots\\ a_{11}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 420,& 11840,& 309696, &4291440,\cdots\\ a_{12}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 201,& 8930,& 225754, &3661348,\cdots\\ a_{13}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 40,& 2240,& 151849, &2947392,\cdots\\ a_{14}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 18,& 2040,& 91147, &2103648,\cdots\\ a_{15}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 2,& 224,& 55030, &1575744,\cdots\\ a_{16}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 1,& 270,& 26762, &915924,\cdots\\ a_{17}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 14627, &665088,\cdots\\ a_{18}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 5405, &295956,\cdots\\ a_{19}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 2642, &218508,\cdots\\ a_{20}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 641, &63522,\cdots\\ a_{21}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 293, &54672,\cdots\\ a_{22}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 48, &8964,\cdots\\ a_{23}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 22, &9552,\cdots\\ a_{24}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 2, &706,\cdots\\ a_{25}(n) =&0,&0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 0,& 1, &972,\cdots where the vertical sum over columns of terms gives n!. CONJECTURES The above information has lead to a few conjectures. a_{n^2}(2n) = 1 this can be converted to words as, there is exactly one path through 2n points that crosses n² times. The partitions associated with these paths are (2,1)\\ (3,1,4,2)\\ (4,1,5,2,6,3)\\ (5,1,6,2,7,3,8,4)\\ (6,1,7,2,8,3,9,4,10,5) and a clear interlaced pattern can be seen (an example is given in Fig. 3). a_{n^2-1}(2n) = 2, \; n>1 a_{n^2-2}(2n) = 4n+2, \; n>2 a_{n^2-3}(2n) = 8n+8, \; n>3 a_{n^2}(2n+1) = 2(n+1)3^{n-1}, \; n>1
MAIN Let G(q)=_2(m(q)) be an exponential generating function, where Li₂ is the polylogarithm of order 2, _2(z)=^\infty {k^2} and m(q) is the inverse elliptic nome which can be expressed through the Dedakind eta function as m(q)={2})^{8}\eta(2\tau)^{16}}{\eta(\tau)^{24}} where q = eiπτ or by Jacobi theta functions m(q)=\left({\theta_3(0,q)}\right)^4 where \theta_2(0,q)=2^\infty q^{(n+1/2)^2}\\ \theta_3(0,q)=1+2^\infty q^{n^2} giving explicitly G(x)=^\infty {k^2}\left(^\infty x^{(n+1/2)^2}}{1+2^\infty x^{n^2}}\right)^{4k}=^\infty {k!} if we consider the sequence of coefficients ak associated with G(x), modulo 1, or the fractional part of the coefficients, frac(ak) we gain the following sequence 0,0,0,{3},0,{5},0,{7},0,0,0,{11},0,{13},0,0,0,{17},0,{19},0,0,0,{23},0,0,0,0,0,{19},0,{31},0,0,0,0,0,{37},0,0,0,{41},\cdots we see the primes in the denominator in positions where the power of x is a prime. We also note that so far, the numerators are always less than the denominator (obviously), but count, succesively upwards, producing monotonically increasing subsequences. The prime only parts continue {3},{5},{7},{11},{13},{17},{19},{23},{29},{31},{37},{41},{43},{47},{53},{59},{61},{67},{71},{73},{79},{83},{89},{97}, After closer inspection, we see the numerators from the point 1, 3, 7, 13, 15, 21, 25, 27, 31, 37, 43, 45, 51, 55, 57, ... take the form prime(k)−16, the numerators before this take the form 2 ⋅ prime(k)−16, for 6, 10, 3 ⋅ prime(k)−16 for 5, 4 ⋅ prime(k)−16 for 4 and 6 ⋅ prime(k)−16 for the first numerator 2. It is likely then that for the rest of the numbers this pattern continues. This then gives for the coefficient ak of G(x), with k > 6, (a_k)={k}, \; k\in We find that if we take the original coefficients ak, and subtract this fractional part in general \delta_k=a_k-{k} for numbers m which cannot be written as a sum of at least three consecutive positive integers, δm is an integer (empirical). A111774 “ Numbers that can be written as a sum of at least three consecutive positive integers.” apart from odd primes, numbers which cannot are powers of two. OTHER We find a similar relationship with G_2(x)=_2\left({(1-x)^2\left(1-{x-1}\right)^2}\right)=^\infty {k!} where bk seem to follow for k > 2 (b_k)={k}, \; k\in GENERATING FUNCTION FOR FRACTIONAL PART We see the Generating function for n/2 is {2(x-1)^2} but the generating function for the fractional part of n/2, which is (n mod2)/2, is given by {2(x^2-1)} the property described is associated with the polylog, and we seen that the fractional part of _2(2x)=^\infty {k!} gives (c_k)={k}, \; k\in\\ 0, \; this means \left({k^2}\right) = {k}, \; k\in\\ 0,\; or \left({k}\right)= {k}, \; k\in\\ 0,\; we also see that \left({k}\right)= {k}, \; k\in\\ {2}, 4\\ 0,\;