The aim of this paper is to establish some strong coupled fixed point theorems via a new concept of cyclic contractive type mappings in the context of fuzzy metric spaces. Moreover, we ensure the existence of a common solution of the two Urysohn type integral equations:% for our result to get the existence theorem for common solution. The two Urysohn type integral equations are \begin{align*} &\xi(l)=\int_{a}^{b}K_1(l,s,\xi(s))ds+h_1(l),\\ &\xi(l)=\int_{a}^{b}K_2(l,s,\xi(s))ds+h_2(l), \end{align*} where $l\in[a,b]\subset\mathbb{R}$, $\xi,h_1,h_2\in C([a,b],\mathbb{R})$ and $K_1,K_2:[a,b]^2\times \mathbb{R}\to\mathbb{R}$