Yunxiang Chen

and 16 more

Streambed grain sizes and hydro-biogeochemistry (HBGC) control river functions. However, measuring their quantities, distributions, and uncertainties is challenging due to the diversity and heterogeneity of natural streams. This work presents a photo-driven, artificial intelligence (AI)-enabled, and theory-based workflow for extracting the quantities, distributions, and uncertainties of streambed grain sizes and HBGC parameters from photos. Specifically, we first trained You Only Look Once (YOLO), an object detection AI, using 11,977 grain labels from 36 photos collected from 9 different stream environments. We demonstrated its accuracy with a coefficient of determination of 0.98, a Nash–Sutcliffe efficiency of 0.98, and a mean absolute relative error of 6.65% in predicting the median grain size of 20 testing photos. The AI is then used to extract the grain size distributions and determine their characteristic grain sizes, including the 5th, 50th, and 84th percentiles, for 1,999 photos taken at 66 sites. With these percentiles, the quantities, distributions, and uncertainties of HBGC parameters are further derived using existing empirical formulas and our new uncertainty equations. From the data, the median grain size and HBGC parameters, including Manning’s coefficient, Darcy-Weisbach friction factor, interstitial velocity magnitude, and nitrate uptake velocity, are found to follow log-normal, normal, positively skewed, near log-normal, and negatively skewed distributions, respectively. Their most likely values are 6.63 cm, 0.0339 s·m-1/3, 0.18, 0.07 m/day, and 1.2 m/day, respectively. While their average uncertainty is 7.33%, 1.85%, 15.65%, 24.06%, and 13.88%, respectively. Major uncertainty sources in grain sizes and their subsequent impact on HBGC are further studied.

Yunxiang Chen

and 10 more

Quantifying the multiscale feedback between hydrodynamics and biogeochemistry is key to reliable modeling of river corridor systems. However, accurate and efficient hydrodynamics models over large spatiotemporal scales have not yet been established due to limited surveys of riverbed roughness and high computational costs. This work presents a semi-automated workflow that combines topographic and water stage surveys, computational fluid dynamics modeling, distributed wall resistance modeling, and high-performance computing to simulate flow in a 30-kilometer-long reach at the Columbia River during 2011-2019. The results show that this workflow enables a high accuracy in modeling water stage at all seven survey locations during calibration (1 month) and validation (65 months) periods. It also enables a high computational efficiency to model the streamflow during a 58-month solution-time within less than a 6-day wall-clock-time with mesh number, time step, and CPU hours of about 1.2 million, 3 seconds, and 1.1 million hours, respectively. Using the well-validated results, we show that riverbed dynamic pressure is randomly distributed over all spatiotemporal scales with its cross-sectional average values approximately quantified by a normal distribution with a mean and standard deviation of -0.353 m and 0.0352 m; bed shear stress is affected by flowrate and large- and small-scale topographic features with cross-sectional maximum values following a smooth but asymmetric distribution with 90% of its value falling between 5 Pa and 35 Pa; and hydrostatic pressure is influenced by flowrate and large-scale topographic features with cross-sectional maximum values quantified by a discontinuous and skewed distribution determined by streamwise topographic variations.

Timothy Scheibe

and 18 more

River corridors, the spatial domains around rivers in which river water interacts with surrounding sediment and rock, are important components of watersheds. They comprise extremely complex ecosystems: heterogeneous at all spatial scales with strong temporal dynamics, coupled biological, geochemical, and hydrologic processes, and ubiquitous human impacts. We present several ways that our project, focused around the 75 km Hanford Reach of the Columbia River but with multiple connections to other systems, is addressing this challenge. These include 1) deployment of intensive, automated sensor networks supplemented by data from the Hanford Environmental Information System (HEIS) for hyporheic zone monitoring 2) data assimilation of these and other data into models using joint hydrologic and geophysical inversion, 3) integrating MASS2 model outputs and bathymetry data using machine learning to classify hydromorphologic features, 4) a community-based effort to develop broad understanding of organic carbon biogeochemistry and microbiomes in diverse river systems, and 5) use of multi-‘omics data to develop new biogeochemical reaction networks. These underpin the incorporation of process understanding and diverse data into high-resolution mechanistic models, and employment of those models to develop reduced-order models that can be applied at large scales while retaining the effects of local features and processes. In so doing we are contributing to reduction of uncertainties associated with major Earth system biogeochemical fluxes, thus improving predictions of environmental and human impacts on water quality and riverine ecosystems and supporting environmentally responsible management of linked energy-water systems.