Jan Taylor

and 4 more

1. Global climate change affects many aspects of biology and has been shown to cause body size changes in animals. However, suitable datasets allowing the analysis of long-term relationships between body size and climate are rare. 2. The size of the skull, often used as a proxy for body size, does not change much in fully grown vertebrates, but some soricine shrews shrink their skull and brain in winter and regrow it in spring. This is thought to be a winter adaptation in these high-metabolic, nonhibernating animals, as a smaller brain size reduces energy requirements. 3. Climate could thus affect not only the overall size but also the pattern of the size change, i.e., Dehnel’s Phenomenon, in these shrews. 4. We assessed the impact of the changes in climate on the overall skull size and the different stages of Dehnel’s phenomenon in skulls of the common shrew, Sorex araneus, collected over 50 years in the Białowieża Forest, NE Poland. 5. Overall skull size decreased, along with increasingly mild winters and decreasing soil moisture, which determined the availability of the shrews’ main food source, earthworms. The magnitude of Dehnel’s phenomenon increased over time, indicating an increasing selection pressure on animals in winter. Overall, climate clearly affected the common shrew’s overall size as well as its seasonal size changes. With the current acceleration in climate change, the effects on the distribution range of this cold-adapted species may be quite severe.

Zbigniew Borowski

and 4 more

1. Silicon mediated plant–herbivore interactions have gained increasing recognition and have now been studied in a wide range of species. Many studies have also considered accumulation of Si by plants as a process largely driven by geo-hydrological cycles. 2. To identify factors driving the water - plant Si - herbivore nexus we analysed the concentration of Si in fibrous tussock sedge (Carex appropinquata), the population density of the root vole (Microtus oeconomus) and the ground water level, over 11 years. 3. The largest influence of autumn Si concentration in leaves (Sileaf) was the level of the current year’s ground water table, which accounted for 13.3% of its variance. The previous year’s vole population density was weakly positively correlated with Sileaf and alone explained 9.5% of its variance. 4. The only variable found to have a positive, significant effect on autumn Si concentration in rhizomes (Sirhiz) was the current year spring water level explaining as much as 60.9% of its variance. 5. We conclude that the changes in Si concentration in fibrous tussock sedge are predominantly driven by hydrology, with vole population dynamics being secondary. Our results provide only partial support for the existence of plant-herbivore interactions, as we did not detect the significant effects of Si tussock concentration on the vole density dynamics. This was mainly due to low level of silification of sedges, which was insufficient to impinge herbivores. Future studies on plant–herbivore interactions should therefore mainly focus on identification of mechanisms and conditions allowing plants to accumulate silica at the levels sufficient to act as an anti-herbivore protection.

Javier Lázaro

and 6 more

1. Some small mammals exhibit Dehnel’s phenomenon, a drastic decline in body mass, braincase and brain size from summer to winter, followed by a regrowth in spring. This is accompanied by a reorganization of the brain and changes in other organs. The evolutionary link between these changes and seasonality remains unclear, although the magnitude of change varies between locations as the phenomenon is thought to lead to energy savings during winter. 2. Here we explored geographic variation of the intensity of Dehnel’s phenomenon in Sorex araneus. We compiled the literature on seasonal changes in braincase size, brain and body mass, supplemented by our own data from Poland, Germany and Czech Republic. 3. We analysed the effect of geographic and climate variables on the magnitude of change and patterns of brain reorganization. 4. From summer to winter the braincase height decreased by 13%, followed by 10% regrowth in spring. For body mass the changes were -21%/+82%, respectively. Changes increased along the north-east axis. Several climate variables were correlated with these transformations, confirming a link of the magnitude of the changes with environmental conditions. This relationship differed for the brain mass decline vs. regrowth, suggesting that they may have evolved under different selective pressures. 5. We found no geographic trends explaining variability in the brain mass changes although they were similar (-21%/+10%) to those of the braincase size. Underlying patterns of change in brain organisation in North-Eastern Poland were almost identical to the pattern observed in Southern Germany. This indicates that local habitat characteristics may play a more important role in determining brain structure than broad scale geographic conditions. 6. We discuss the techniques and criteria used for studying this phenomenon, as well as its potential presence in other taxa and the importance of distinguishing it from other kinds of seasonal variation.