Eileen Doyle

and 2 more

Aim: To assess the potential of interleukin-6 (IL-6) signaling blockade in the lung to treat SARS-CoV-2 infection via model-based simulation by exploring soluble IL-6 receptor (sIL-6R) sequestration by tocilizumab (TCZ) and IL-6 sequestration by siltuximab (SIL). Methods: Literature values of IL-6, the IL-6 antagonist SIL, sIL-6R, the IL-6R antagonist TCZ, and their respective binding constants were used to develop a model to predict the impact of treatment on IL-6 signaling. Models were used to generate simulated bronchoalveolar lavage (BAL) concentrations for normal subjects, subjects at risk of developing acute respiratory distress syndrome (ARDS), and subjects with ARDS were simulated under four conditions: without treatment, treatment with TCZ, treatment with SIL, and treatment with TCZ + SIL. Results: With TCZ intervention, IL-6 levels are unaffected and sIL-6R is reduced somewhat below the Normal case. IL-6:sIL-6R complex only slightly decreased relative to the no-intervention case. With SIL intervention, sIL-6R levels are unaffected and IL-6 is greatly reduced below the Normal case. IL-6:sIL-6R complex is greatly decreased relative to the no-intervention case. With TCZ + SIL intervention, IL-6 and sIL-6R levels are reduced below the Normal case and achieve suppression equivalent to monotherapy results for their respective targets. IL-6:sIL-6R complex reduction is predicted to be greater than monotherapy. This reflects sequestration of both components of the complex and the nonlinear binding equilibrium. Conclusion: Co-administration of both IL-6 and IL-6R sequestering products such as SIL and TCZ may be necessary to effectively treat COVID-19 patients who have or are at risk of developing ARDS.

Kashyap Patel

and 6 more

AIM: We propose the use of in silico mathematical models to provide insights that optimize therapeutic interventions designed to eradicate respiratory infection during a pandemic. A modelling and simulation framework is provided using SARS-CoV-2 as an example, considering applications of both treatment and prophylaxis. METHODS: A target cell-limited model was used to quantify the viral infection dynamics of SARS-CoV-2 in a pooled population of 105 infected patients. Parameter estimates from the resulting model were used to simulate and compare the impact of various interventions against meaningful viral load endpoints. RESULTS: Robust parameter estimates were obtained for the basic reproduction number, viral release rate and infected-cell mortality from the infection model. These estimates were informed by the largest dataset currently available for SARS-CoV-2 viral time course. The utility of this model was demonstrated using simulations, which hypothetically introduced inhibitory or stimulatory drug mechanisms at various target sites within the viral life-cycle. We show that early intervention is crucial to achieving therapeutic benefit when monotherapy is administered. In contrast, combination regimens of two or three drugs may provide improved outcomes if treatment is initiated late. The latter is relevant to SARS-CoV-2, where the period between infection and symptom onset is relatively long. CONCLUSIONS: The use of in silico models can provide viral load predictions that can rationalize therapeutic strategies against an emerging viral pathogen.

Michael Dodds

and 3 more

Aim: We hypothesize that the efficacy of COVID-19 therapeutic candidates will be better predicted by understanding their effects at various points on a viral cell cycle, in particular, the specific rate constants, and that drugs acting independently of these specific discrete sites may not yield expected efficacy. We hypothesize that drugs, or combinations of drugs that act at specific multiple sites on the viral life cycle have the highest probability of success in the treatment of early infection phase in COVID-19 patients. Methods: Using a target cell limited model structure that had been used to characterize viral load dynamics from COVID-19 patients, we performed simulations to show that combinations of therapeutics targeting specific rate constants have greater probability of efficacy and supportive rationale for clinical trial evaluation. Results: Based on the known kinetics of the SARS-CoV-2 life cycle, we rank ordered potential targeted approaches involving repurposed, low-potency agents. We suggest that targeting multiple points central to viral replication within infected host cells or release from those cells is a viable strategy for reducing both viral load and host cell infection. In addition, we observed that the time-window opportunity for a therapeutic intervention to effect duration of viral shedding exceeds the effect on sparing epithelial cells from infection or impact on viral load AUC. Furthermore, the impact on reduction on duration of shedding may extend further in patients who exhibit a prolonged shedder phenotype. Conclusions: Our work highlights the use of model-informed tools to better rationalize effective treatments for COVID-19.