Dylan Hrach

and 3 more

Mountain regions are an important regulator in the global water cycle through their disproportionate water contribution. Often referred to as the “Water Towers of the World”, mountains contribute 40 to 60% of the world’s annual surface flow. Shade is a common feature in mountains, where complex terrain cycles land surfaces in and out of shadows over daily and seasonal scales. This study investigated turbulent water and carbon dioxide fluxes over the snow-free period in a subalpine wetland in the Canadian Rocky Mountains, from June 7th to September 10th, 2018. Shading had a significant and substantial effect on water and carbon fluxes at our site. Each hourly increase of shade per day reduced evapotranspiration (ET) and gross primary production (GPP) by 0.42 mm and 0.77 gCm-2, equivalent to 17% and 15% per day, respectively, over the entire study period. However, during only peak growing season, when leaves were fully out and mature, shade caused by the local complex terrain, reduced ET and increased GPP, likely due to enhanced diffuse radiation. The overall result was increased water use efficiency at the site during periods of increased shading during the peak growing season. In addition to incoming solar radiation (Rg), temporal variability in ET was found to relate to temporal variability in soil temperature, moisture and vapour pressure deficit. Shade impacted the curvature and intercept of the nonlinear ET-Rg relationship at our site. In contrast, temporal variability in GPP at our site was dependent largely on Rg only. Our findings suggest that shaded subalpine wetlands can store large volumes of water for late season runoff and are productive through short growing seasons.

Lindsey Langs

and 2 more

Subalpine forests are hydrologically important to the function and health of mountain basins. Identifying the specific water sources and the proportions used by subalpine forests is necessary to understand potential impacts to these forests under a changing climate. The recent ‘Two Water Worlds’ hypothesis suggests that trees can favour tightly bound soil water instead of readily available free-flowing soil water. Little is known about the specific sources of water used by subalpine trees Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce) in the Canadian Rocky Mountains. In this study, stable water isotope (δ18O and δ2H) samples were obtained from Subalpine fir and Engelmann spruce trees at three points of the growing season in combination with water sources available at time of sampling (snow, bound soil water, saturated soil water, precipitation). Using the Bayesian Mixing Model, MixSIAR, relative source water proportions were calculated. In the drought summer examined, there was a net loss of water via evapotranspiration from the system. Results highlighted the importance of tightly bound soil water to subalpine forests, providing insights of future health under sustained years of drought and net loss in summer growing seasons. This work builds upon concepts from the ‘Two Water Worlds’ hypothesis, showing that subalpine trees can draw from different water sources depending on season and availability. In our case, water use was largely driven by a tension gradient within the soil allowing trees to utilize tightly bound soil water and saturated soil water at differing points of the growing season.