Diego Bruciaferri

and 10 more

Many human activities rely on accurate knowledge of the sea surface dynamics. This is especially true during storm events, when wave-current interactions might represent a leading order process of the upper ocean. In this study, we assess and analyse the impact of including three wave-dependent processes in the ocean momentum equation of the Met Office North West European Shelf (NWS) ocean-wave forecasting system on the accuracy of the simulated surface circulation. The analysis is conducted using ocean currents and Stokes drift data produced by different implementations of the coupled forecasting systems to simulate the trajectories of surface (iSphere) and 15 m drogued (SVP) drifters affected by four storms selected from winter 2016. Ocean and wave simulations differ only in the degree of coupling and the skills of the Lagrangian simulations are evaluated by comparing model results against the observed drifter tracks. Results show that, during extreme events, ocean-wave coupling improves the accuracy of the surface dynamics by 4%. Improvements are larger for ocean currents on the shelf (8%) than in the open ocean (4%): this is thought to be due to the synergy between strong tidal currents and more mature decaying waves. We found that the Coriolis-Stokes forcing is the dominant wave-current interaction for both type of drifters; for iSpheres the secondary wave effect is the wave-modulated water-side stress while for SVPs the wave-dependent sea surface roughness is more important. Our results indicate that coupled ocean-wave systems may play a key role for improving the accuracy of particle transport simulations.

Huw Lewis

and 1 more

A regional coupled approach to water cycle prediction is demonstrated for the 4-month period from November 2013 to February 2014 through analysis of precipitation, soil moisture, river flow and coastal ocean simulations produced by a km-scale atmosphere-land-ocean coupled system focussed on the United Kingdom (UK), running with horizontal grid spacing of around 1.5 km across all components. The Unified Model atmosphere component, in which convection is explicitly simulated, reproduces the observed UK rainfall accumulation (r2 of 0.62 for daily accumulation), but there is a notable bias in its distribution – too dry over western upland areas and too wet further east. The JULES land surface model soil moisture state is shown to be in broad agreement with a limited number of cosmic-ray neutron probe observations. A comparison of observed and simulated river flow shows the coupled system is useful for predicting broad scale features, such as distinguishing high and low flow regions and times during the period of interest but are shown to be less accurate than optimised hydrological models. The impact of simulated river discharge on NEMO model simulations of coastal ocean state is explored in the coupled system, with comparisons provided relative to experiments using climatological river input and no river input around the UK coasts. Results show that the freshwater flux around the UK contributes of order 0.2 psu to the mean surface salinity, and comparisons to profile observations give evidence of an improved vertical structure when applying simulated flows. This study represents a baseline assessment of the coupled system performance, with priorities for future model developments discussed.