Stefano Menegatti

and 16 more

The recent uptick in the approval of ex vivo cell therapies highlight the relevance of Lentivirus (LV) as an enabling viral vector of modern medicine. As labile biologics, however, LVs pose critical challenges to industrial biomanufacturing. In particular, LV purification – currently reliant on filtration and anion-exchange or size-exclusion chromatography – suffers from long process times and low yield of transducing particles, which translate in high waiting time and cost to patients. Seeking to improve LV downstream processing, this study introduces peptides targeting the enveloped protein Vesicular stomatitis virus G (VSV-G) to serve as affinity ligands for the chromatographic purification of LV particles. An ensemble of candidate ligands was initially discovered by implementing a dual-fluorescence screening technology and a targeted in silico approach designed to identify sequences with high selectivity and tunable affinity. The selected peptides were conjugated on Poros resin and their LV binding-and-release performance was optimized by adjusting the flow rate, composition, and pH of the chromatographic buffers. Ligands GKEAAFAA and SRAFVGDADRD were selected for their high product yield (50-60% of viral genomes; 40-50% of HT1080 cell-transducing particles) upon elution in PIPES buffer with 0.65 M NaCl at pH 7.4. The peptide-based adsorbents also presented remarkable values of binding capacity (up to 3·10 9 TU per mL of resin at the residence time of 1 min) and clearance of host cell proteins (up to 220-fold reduction of HEK293 HCPs). Additionally, GKEAAFAA demonstrated high resistance to caustic cleaning-in-place (0.5 M NaOH, 30 min) with no observable loss in product yield and quality.

Thomas Johnson

and 6 more

X-ray computed tomography was applied in imaging 3D printed gyroids used for bioseparation in order to visualize and characterize structures from the entire geometry down to individual nanopores. Methacrylate prints were fabricated with feature sizes of 500 µm, 300 µm and 200 µm, with the material phase exhibiting a porous substructure in all cases. Two X-ray scanners achieved pixel sizes from 5 µm to 16 nm to produce digital representations of samples across multiple length scales as the basis for geometric analysis and flow simulation. At the gyroid scale, imaged samples were visually compared to the original computed aided designs to analyze printing fidelity across all feature sizes. An individual 500 µm feature, part of the overall gyroid structure, was compared and overlaid between the design and imaged volumes where individual printed layers could be identified. Internal subvolumes of all feature sizes were segmented into material and void phases for permeable flow analysis. Small pieces of 3D printed material were optimized for nanotomographic imaging at a pixel size of 63 nm, with all three gyroid samples exhibiting similar geometric characteristics when measured. An average porosity of 45% was obtained that was within the expected design range and a tortuosity factor of 2.52 was measured. Applying a voidage network map enabled the size, location and connectivity of individual pores to be identified, obtaining an average internal pore size of 793 nm. Using the Avizo XLAB plugin at a bulk diffusivity of 7.00 x10 -11 m 2s -1 resulted in a simulated material diffusivity of 2.17 x10 -11 m 2s -1 ± 0.16 x10 -11 m 2s -1.