Liangzhen Zheng

and 12 more

We introduce a deep learning-based ligand pose scoring model called zPoseScore for predicting protein-ligand complexes in the 15th Critical Assessment of Protein Structure Prediction (CASP15). Our contributions are three-fold: firstly, we generate six training and evaluation datasets by employing advanced data augmentation and sampling methods. Secondly, we redesign the “zFormer” module, inspired by AlphaFold2’s Evoformer, to efficiently describe protein-ligand interactions. This module enables the extraction of protein-ligand paired features that lead to accurate predictions. Lastly, we develop the zPoseScore framework with zFormer for scoring and ranking ligand poses, allowing for atomic-level protein-ligand feature encoding and fusion to output refined ligand poses and ligand per-atom deviations. Our results demonstrate excellent performance on various testing datasets, achieving Pearson’s correlation R = 0.783 and 0.659 for ranking docking decoys generated based on experimental and predicted protein structures of CASF-2016 protein-ligand complexes. Additionally, we obtain an averaged lDDT = 0.558 of AIchemy_LIG2 in CASP15 for de novo protein-ligand complex structure predictions. Detailed analysis shows that accurate ligand binding site prediction and side-chain orientation are crucial for achieving better prediction performance. Our proposed model is one of the most accurate protein-ligand pose prediction models and could serve as a valuable tool in small molecule drug discovery.