Dylan Hrach

and 3 more

Mountain regions are an important regulator in the global water cycle through their disproportionate water contribution. Often referred to as the “Water Towers of the World”, mountains contribute 40 to 60% of the world’s annual surface flow. Shade is a common feature in mountains, where complex terrain cycles land surfaces in and out of shadows over daily and seasonal scales. This study investigated turbulent water and carbon dioxide fluxes over the snow-free period in a subalpine wetland in the Canadian Rocky Mountains, from June 7th to September 10th, 2018. Shading had a significant and substantial effect on water and carbon fluxes at our site. Each hourly increase of shade per day reduced evapotranspiration (ET) and gross primary production (GPP) by 0.42 mm and 0.77 gCm-2, equivalent to 17% and 15% per day, respectively, over the entire study period. However, during only peak growing season, when leaves were fully out and mature, shade caused by the local complex terrain, reduced ET and increased GPP, likely due to enhanced diffuse radiation. The overall result was increased water use efficiency at the site during periods of increased shading during the peak growing season. In addition to incoming solar radiation (Rg), temporal variability in ET was found to relate to temporal variability in soil temperature, moisture and vapour pressure deficit. Shade impacted the curvature and intercept of the nonlinear ET-Rg relationship at our site. In contrast, temporal variability in GPP at our site was dependent largely on Rg only. Our findings suggest that shaded subalpine wetlands can store large volumes of water for late season runoff and are productive through short growing seasons.