Amartya Saha

and 6 more

Evapotranspiration (ET) constitutes the largest loss of water from subtropical grassland and wetland ecosystems, yet data in much of the world have high uncertainty at the landscape scale as there is little information on plant water use. Additionally, anthropogenic alterations to grasslands are a major threat globally and alter ecosystem water use, but the impact of these changes is often unquantified. A major reason for this is the complexity and expense of field-based ET quantification methods such as agricultural lysimeters and eddy covariance systems. Accurate measurements of ET are critical for sustainable water management. This study developed two different low-cost lysimeters – weighing-type and water level based, to measure ET under controlled conditions for single species as well as mixed grassland and wetland communities. Lysimeters were placed in an open sided shadehouse with a transparent roof to exclude rainfall. ET values were then compared with (i) Actual ET measurements from an eddy covariance tower onsite, (ii) vapor transport-based ET models – FAO Penman-, Modified Turc and Abtew Simple Radiation models, and (iii) ET data from the Florida Automated Weather Network. Both weighing-type and water level lysimeters showed seasonal patterns and annual magnitudes similar to the other ET methods. Annual ET measurements from weighing-type lysimeters (881-1278 mm for four plant species, n=5 per species, 20 in total) and water level lysimeters (1085 mm, plant community average, n = 31) were similar to model estimates (1000-1200mm). Actual ET from eddy covariance was 722 mm for ten months (missing data for February and March), while lysimeter measurements for the dominant grass Paspalum notatum was 885mm for the same 10 months. Low-cost lysimeters can inform regional ET models/remote sensing data lacking field validation and thus are potentially useful for water resources and ecosystem management in data-poor regions of the world.
Dominant and non-dominant plants could be subject to different biotic and abiotic influences, partially because dominant plants modify the environment where non-dominant plants grow, causing an interaction asymmetry. Among other possibilities, if dominant plants compete strongly, they should deplete most resources forcing non-dominant plants into a more constrained niche space. Conversely, if dominant plants are constrained by the environment, they might not fully deplete available resources but instead ameliorate some of the environmental constraints limiting non-dominants. Hence, the nature of the interactions between the non-dominants could be modified by dominant species. However, when plant competition and environmental constraints have similar effects on dominant and non-dominant species no difference is expected. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (underdispersed), suggesting dominant species are likely organized by environmental filtering, and that non-dominant species were either randomly assembled or overdispersed. Traits showed similar trends, but insufficient data prevented further analyses. Furthermore, several lineages scattered in the phylogeny had more non-dominant species, suggesting that traits related to non-dominants are phylogenetically conserved and have evolved multiple times. We found some environmental drivers of the dominant—non-dominant disparity. Our results indicate that assembly patterns for dominants and non-dominants are different, consistent with asymmetries in assembly mechanisms. Among the different mechanisms we evaluated, the results suggest two complementary hypotheses seldom explored: (1) Non-dominant species include lineages adapted to thrive in the environment generated by the dominant species. (2) Even when dominant species reduce resources to non-dominant ones, dominant species could have a stronger effect on—at least—some non-dominants by ameliorating the impact of the environment on them, than by depleting resources and increasing the environmental stress to those non-dominants. The results show that the dominant–non-dominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.

Amartya Saha

and 5 more

Evapotranspiration (ET) constitutes the largest loss of water from subtropical grassland and wetland ecosystems, yet estimates have high uncertainty at the landscape scale as there is little information on plant water use. A major reason for this is the complexity and expense of field-based ET quantification methods such as agricultural lysimeters and eddy covariance systems. This study developed two different low-cost lysimeters – weighing-type and water level based, to measure ET under controlled conditions for single species as well as mixed grassland and wetland communities. Lysimeters were placed in an open sided shadehouse with a transparent roof to exclude rainfall. ET values were then compared with (i) Actual ET measurements from an eddy covariance tower onsite, (ii) vapor transport-based ET models - FAO Penman-Monteith, Modified Turc and Abtew Simple Radiation models, and (iii) ET data from the Florida Automated Weather Network. Both weighing-type and water level lysimeters showed seasonal patterns and annual magnitudes similar to the other ET methods. Annual ET measurements from weighing lysimeters (881-1278 mm for four plant species, n=5 per species) and water level lysimeters (1085 mm, n = 30) were similar to model estimates (1000-1200mm). Actual ET from eddy covariance was 722 mm for ten months (missing data for February and March), similar to lysimeter measurements for the dominant grass Paspalum notatum (885mm for 10 months). Low-cost lysimeters can easily inform regional ET models/remote sensing data lacking field validation and thus are potentially useful for water resources and ecosystem management in data-poor regions of the world.