ZAHRA RIAZI

and 2 more

Water quality dynamics depend strongly on hydrologic flow paths and transit time within catchments. In this paper we use a travel time tracking method to simulate stream salinity (as measured by electrical conductivity) in the Duck River catchment, NW Tasmania, Australia. The approach couples the StorAge transit time modelling approach with two different approaches to model electrical conductivity. The first assumes the catchment has a cyclic salt balance (rainfall source, stream flow sink) that is in dynamic equilibrium and evapoconcentration of salt is the only process changing concentration. The second assumes that the salinity of water in catchment storages is a function of water age in those stores, without explicitly simulating salt mass balance processes. The paper compares these alternate approaches in terms of salinity simulation, simulated stream water age distributions, and simulated storage age distributions. Both salinity simulation approaches reproduce stream salinity with high fidelity under calibration and perform well under validation. The simulations using the age-related solute concentration approach produce less biased results and thus high model efficiencies for validation periods. This approach also produces more consistent model parameter estimates between periods. There are systematic differences in the resultant age distributions between models, particularly for the solute balance based simulations where parameters (catchment storage size) changed more between calibration periods. The effect of time varying versus static storage selection functions are compared, with clear evidence that time varying storage selection functions with parameters linked to catchment conditions (flow) are essential for adequate simulation of event concentration dynamics.